2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)最新文献

筛选
英文 中文
A Review towards the Sentiment Analysis Techniques for the Analysis of Twitter Data
P. Tyagi, D. R. Tripathi
{"title":"A Review towards the Sentiment Analysis Techniques for the Analysis of Twitter Data","authors":"P. Tyagi, D. R. Tripathi","doi":"10.2139/ssrn.3349569","DOIUrl":"https://doi.org/10.2139/ssrn.3349569","url":null,"abstract":"Any opinion of an individual through which the feelings, attitudes and thoughts can be expressed is known as sentiment. The kinds of data analysis which is attained from the news reports, user reviews, social media updates or microblogging sites is called sentiment analysis which is also known as opinion mining. The reviews of individuals towards certain events, brands, product or company can be known through sentiment analysis. The responses of general public are collected and improvised by researchers to perform evaluations. \u0000 \u0000The popularity of sentiment analysis is growing today since the numbers of views being shared by people on the microblogging sites are also increasing. All the sentiments can be categorized into three different categories called positive, negative and neutral. Twitter, being the most popular microblogging site, is used to collect the data to perform analysis. Tweepy is used to extract the source data from Twitter. Python language is used in this research to implement the classification algorithm on the collected data. \u0000 \u0000The features are extracted using N-gram modeling technique. The sentiments are categorized among positive, negative and neutral using a supervised machine learning algorithm known as K-Nearest Neighbor.","PeriodicalId":155631,"journal":{"name":"2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129761542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信