Jin Hyeok Yang, Seong‐Ju Hwang, Seung-Kyu Chun, Ki Jae Kim
{"title":"Effect of Temperature on the Deterioration of Graphite-Based Negative Electrodes during the Prolonged Cycling of Li-ion Batteries","authors":"Jin Hyeok Yang, Seong‐Ju Hwang, Seung-Kyu Chun, Ki Jae Kim","doi":"10.33961/jecst.2021.00899","DOIUrl":"https://doi.org/10.33961/jecst.2021.00899","url":null,"abstract":"In this paper, we report the effects of temperature on the deterioration of graphite-based negative electrodes during the long-term cycling of lithium-ion batteries (LIBs). After cycling 75 Ah pouch-type LIB full cells at temperatures of 45 o C (45-Cell) and 25 o C (25-Cell) until their end of life, we expected to observe changes in the negative electrode according to the temperature. The thickness of the negative electrode of the cell was greater after cycling; that of the electrode of 45-Cell (144 µm) was greater than that of the electrode of 25-Cell (109 µm). Cross-sectional scanning electron microscopy analysis confirmed that by-products caused this increase in the thickness of the negative electrode. The by-products that formed on the surface of the negative electrode during cycling increased the surface resistance and decreased the electrical conductivity. Voltage profiles showed that the negative electrode of 25-Cell exhibited an 84.7% retention of the initial capacity, whereas that of 45-Cell showed only a 70.3% retention. The results of this study are expected to be relevant to future analyses of the deterioration characteristics of the negative electrode and battery deterioration mechanisms, and are also expected to provide basic data for advanced battery design.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45358630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaeram Kim, Sehyun Kwak, H. Pham, Hyun-Gi Jo, Do-Man Jeon, A-Reum Yang, Seung‐Wan Song
{"title":"Mitigating Metal-dissolution in a High-voltage 15 wt% Si- Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives","authors":"Jaeram Kim, Sehyun Kwak, H. Pham, Hyun-Gi Jo, Do-Man Jeon, A-Reum Yang, Seung‐Wan Song","doi":"10.33961/jecst.2021.01165","DOIUrl":"https://doi.org/10.33961/jecst.2021.01165","url":null,"abstract":".","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45229157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Doh, Y. Ha, S. Eom, Ji-hyun Yu, Seon-Hwa Choe, Seog-Whan Kim, Jae-Won Choi
{"title":"Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery","authors":"C. Doh, Y. Ha, S. Eom, Ji-hyun Yu, Seon-Hwa Choe, Seog-Whan Kim, Jae-Won Choi","doi":"10.33961/jecst.2021.00661","DOIUrl":"https://doi.org/10.33961/jecst.2021.00661","url":null,"abstract":"Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, ‘state of charge (SOC)’ can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47596664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huyen Nguyen, H. Pham, V. Nguyen, Tung Mai, H. Le, Thuy T. B. Hoang
{"title":"Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling","authors":"Huyen Nguyen, H. Pham, V. Nguyen, Tung Mai, H. Le, Thuy T. B. Hoang","doi":"10.33961/jecst.2021.00815","DOIUrl":"https://doi.org/10.33961/jecst.2021.00815","url":null,"abstract":"Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production’s sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48589993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Raza, M. R. A. Karim, Tauheed Shehbaz, A. A. Taimoor, R. Ali, Muhammad Imran Khan
{"title":"Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment","authors":"S. A. Raza, M. R. A. Karim, Tauheed Shehbaz, A. A. Taimoor, R. Ali, Muhammad Imran Khan","doi":"10.33961/jecst.2020.01214","DOIUrl":"https://doi.org/10.33961/jecst.2020.01214","url":null,"abstract":"In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cland OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43402449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Properties of Trimethylammonium Tetrafluoroborate in Electrochemical Double-Layer Capacitors","authors":"Soo-Man Lee, Kyung-Min Lee, Ketack Kim","doi":"10.33961/jecst.2021.00787","DOIUrl":"https://doi.org/10.33961/jecst.2021.00787","url":null,"abstract":"Trimethylammonium tetrafluoroborate (TriMA BF4), consisting of the smallest trialkylammonium ion, was investigated for use in electrochemical double-layer capacitors. Despite the presence of a proton in TriMA, cycle life tests in acetonitrile (AN) and -butyrolactone (GBL) showed a good capacity retention with a 1.8 V cut-off voltage. The rate of electrolysis of TriMA BF4 in GBL was lower than that in AN because of the lower conductivity in GBL. As a consequence, the cells based on GBL achieved a higher capacitance and longer life than those with AN. TriMA BF4 had a higher conductivity and lower viscosity than the quaternary salt tetraethylammonium tetrafluoroborate in GBL, as well as higher ionic mobility, these factors resulted in a higher rate capability.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43627085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jihun Song, D. Shin, Seoungwoo Byun, Youngjoon Roh, Cheol Bak, Juhye Song, Jaecheol Choi, Hongkyung Lee, Tae-Soon Kwon, Young-Gi Lee, Myung-Hyun Ryou, Y. Lee
{"title":"A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes","authors":"Jihun Song, D. Shin, Seoungwoo Byun, Youngjoon Roh, Cheol Bak, Juhye Song, Jaecheol Choi, Hongkyung Lee, Tae-Soon Kwon, Young-Gi Lee, Myung-Hyun Ryou, Y. Lee","doi":"10.33961/jecst.2021.00976","DOIUrl":"https://doi.org/10.33961/jecst.2021.00976","url":null,"abstract":"The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 µm (6 mAh cm -2 ). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46693008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min-Seon Shin, C. Choi, Min‐Sik Park, Sung-man Lee
{"title":"Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries","authors":"Min-Seon Shin, C. Choi, Min‐Sik Park, Sung-man Lee","doi":"10.33961/jecst.2021.01004","DOIUrl":"https://doi.org/10.33961/jecst.2021.01004","url":null,"abstract":"The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g -1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g -1 , shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44504675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. E. Lemallem, Abdelali Fiala, H. B. Ladouani, H. Allal
{"title":"Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution","authors":"S. E. Lemallem, Abdelali Fiala, H. B. Ladouani, H. Allal","doi":"10.33961/jecst.2021.00822","DOIUrl":"https://doi.org/10.33961/jecst.2021.00822","url":null,"abstract":"The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10 -3 - 10 -3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45368716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries","authors":"Hyunwoo Kim, Dong Inn Kim, W. Yoon","doi":"10.33961/jecst.2021.00920","DOIUrl":"https://doi.org/10.33961/jecst.2021.00920","url":null,"abstract":"Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48385542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}