Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services最新文献

筛选
英文 中文
Xihe: a 3D vision-based lighting estimation framework for mobile augmented reality Xihe:一个基于3D视觉的移动增强现实照明估计框架
Yiqin Zhao, Tian Guo
{"title":"Xihe: a 3D vision-based lighting estimation framework for mobile augmented reality","authors":"Yiqin Zhao, Tian Guo","doi":"10.1145/3458864.3467886","DOIUrl":"https://doi.org/10.1145/3458864.3467886","url":null,"abstract":"Omnidirectional lighting provides the foundation for achieving spatially-variant photorealistic 3D rendering, a desirable property for mobile augmented reality applications. However, in practice, estimating omnidirectional lighting can be challenging due to limitations such as partial panoramas of the rendering positions, and the inherent environment lighting and mobile user dynamics. A new opportunity arises recently with the advancements in mobile 3D vision, including built-in high-accuracy depth sensors and deep learning-powered algorithms, which provide the means to better sense and understand the physical surroundings. Centering the key idea of 3D vision, in this work, we design an edge-assisted framework called Xihe to provide mobile AR applications the ability to obtain accurate omnidirectional lighting estimation in real time. Specifically, we develop a novel sampling technique that efficiently compresses the raw point cloud input generated at the mobile device. This technique is derived based on our empirical analysis of a recent 3D indoor dataset and plays a key role in our 3D vision-based lighting estimator pipeline design. To achieve the realtime goal, we develop a tailored GPU pipeline for on-device point cloud processing and use an encoding technique that reduces network transmitted bytes. Finally, we present an adaptive triggering strategy that allows Xihe to skip unnecessary lighting estimations and a practical way to provide temporal coherent rendering integration with the mobile AR ecosystem. We evaluate both the lighting estimation accuracy and time of Xihe using a reference mobile application developed with Xihe's APIs. Our results show that Xihe takes as fast as 20.67ms per lighting estimation and achieves 9.4% better estimation accuracy than a state-of-the-art neural network.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125084580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Throughput-fairness tradeoffs in mobility platforms 移动平台中吞吐量与公平性的权衡
Arjun Balasingam, Karthik Gopalakrishnan, R. Mittal, V. Arun, Ahmed Saeed, Mohammad Alizadeh, H. Balakrishnan, H. Balakrishnan
{"title":"Throughput-fairness tradeoffs in mobility platforms","authors":"Arjun Balasingam, Karthik Gopalakrishnan, R. Mittal, V. Arun, Ahmed Saeed, Mohammad Alizadeh, H. Balakrishnan, H. Balakrishnan","doi":"10.1145/3458864.3467881","DOIUrl":"https://doi.org/10.1145/3458864.3467881","url":null,"abstract":"This paper studies the problem of allocating tasks from different customers to vehicles in mobility platforms, which are used for applications like food and package delivery, ridesharing, and mobile sensing. A mobility platform should allocate tasks to vehicles and schedule them in order to optimize both throughput and fairness across customers. However, existing approaches to scheduling tasks in mobility platforms ignore fairness. We introduce Mobius, a system that uses guided optimization to achieve both high throughput and fairness across customers. Mobius supports spatiotemporally diverse and dynamic customer demands. It provides a principled method to navigate inherent tradeoffs between fairness and throughput caused by shared mobility. Our evaluation demonstrates these properties, along with the versatility and scalability of Mobius, using traces gathered from ridesharing and aerial sensing applications. Our ridesharing case study shows that Mobius can schedule more than 16,000 tasks across 40 customers and 200 vehicles in an online manner.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128935241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
PPFL: privacy-preserving federated learning with trusted execution environments PPFL:具有可信执行环境的保护隐私的联邦学习
Fan Mo, H. Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, N. Kourtellis
{"title":"PPFL: privacy-preserving federated learning with trusted execution environments","authors":"Fan Mo, H. Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, N. Kourtellis","doi":"10.1145/3458864.3466628","DOIUrl":"https://doi.org/10.1145/3458864.3466628","url":null,"abstract":"We propose and implement a Privacy-preserving Federated Learning (PPFL) framework for mobile systems to limit privacy leakages in federated learning. Leveraging the widespread presence of Trusted Execution Environments (TEEs) in high-end and mobile devices, we utilize TEEs on clients for local training, and on servers for secure aggregation, so that model/gradient updates are hidden from adversaries. Challenged by the limited memory size of current TEEs, we leverage greedy layer-wise training to train each model's layer inside the trusted area until its convergence. The performance evaluation of our implementation shows that PPFL can significantly improve privacy while incurring small system overheads at the client-side. In particular, PPFL can successfully defend the trained model against data reconstruction, property inference, and membership inference attacks. Furthermore, it can achieve comparable model utility with fewer communication rounds (0.54×) and a similar amount of network traffic (1.002×) compared to the standard federated learning of a complete model. This is achieved while only introducing up to ~15% CPU time, ~18% memory usage, and ~21% energy consumption overhead in PPFL's client-side.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"29 12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116713380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 145
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信