{"title":"Heart failure with preserved ejection fraction: how far we've come - a brief report from two outstanding educational events.","authors":"Antonio Abbate","doi":"10.1097/FJC.0000000000001733","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001733","url":null,"abstract":"","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144512021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaetano Santulli, Urna Kansakar, Stanislovas S Jankauskas, Fahimeh Varzideh
{"title":"Comparative LDL-C Lowering Efficacy of Non-Statin Therapies: Inclisiran is Better than Ezetimibe, PCSK9 inhibitors, and Bempedoic Acid.","authors":"Gaetano Santulli, Urna Kansakar, Stanislovas S Jankauskas, Fahimeh Varzideh","doi":"10.1097/FJC.0000000000001731","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001731","url":null,"abstract":"","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144484513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aerobic exercise rehabilitation training alleviates skeletal muscle atrophy caused by heart failure in mice through the SIRT1/PGC-1α pathway.","authors":"Jiawei Zhang, Xiao Chen, Chunxiao Wan","doi":"10.1097/FJC.0000000000001722","DOIUrl":"10.1097/FJC.0000000000001722","url":null,"abstract":"<p><p>To investigate the potential effects of aerobic exercise rehabilitation training (AET) on the progression of myocardial infarction (MI) in a left anterior descending (LAD) coronary artery ligation model in mice, and to explore the underlying mechanisms.MI was induced in male C57BL/6 mice by ligating the LAD coronary artery. After one week rest, the mice underwent either adaptive ladder training or treadmill training for five consecutive days. The H9C2 cell model was used to simulate AngII-induced myocardial injury, cardiac function was assessed via echocardiography, and gastrocnemius muscle laminin expression was analyzed by immunofluorescence. Skeletal muscle-related gene expression was evaluated by immunoblotting, and the effects of AET on mitochondrial function were assessed using immunoblotting and commercial kits. Additionally, JC-1 staining was employed to examine mitochondrial dysfunction and further confirm the underlying mechanisms.AET significantly improves cardiac function in MI mice and could mitigate skeletal muscle atrophy in these mice. Further analysis revealed that activation of the SIRT1/ PGC-1α pathway by AET enhances mitochondrial function in MI mice. Additionally, SIRT1 activation was shown to alleviate skeletal muscle mitochondrial dysfunction induced by heart failure in vitro.AET can alleviate skeletal muscle atrophy induced by heart failure in mice through the SIRT1/PGC-1α pathway.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144173666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miR-132 inhibition improves cardiac remodeling and function in a two-hit mouse model of heart failure with a preserved ejection fraction.","authors":"Ying Wu, Meiyan Song, Wen Chen, Fengjin Liang, Kaizu Xu, Liming Lin, Meifang Wu","doi":"10.1097/FJC.0000000000001729","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001729","url":null,"abstract":"<p><p>To investigate the impact of antimiR-132, a miR-132 antisense inhibitor, on cardiac remodeling and function in a two-hit mouse model of heart failure with preserved ejection fraction (HFpEF), as well as its underlying mechanism. Male C57BL/6 mice were fed N(omega)-nitro-L-arginine methyl ester plus a high-fat diet to establish an HFpEF model, and then intraperitoneally injected with antimiR-132 or normal saline. Cardiac fibroblasts treated with transforming growth factor β1 (TGF-β1) were cultured in the presence of antimiR-132 or vehicle to examine collagen synthesis and potential mechanisms. Compared to control mice, HFpEF mice showed significant increases in blood pressure, triglycerides, cholesterol, body weight, myocardial hypertrophy, and fibrosis. They also had elevated E/E' ratios and plasma NT-proBNP levels. antimiR-132 did not significantly impact blood pressure or metabolic parameters in HFpEF mice; however, it notably ameliorated myocardial hypertrophy and fibrosis, while concurrently reducing E/E' ratios and plasma NT-proBNP levels. Mechanistically, the cardioprotective effects of antimiR-132 were accompanied by inhibition of the upregulated expression of miR-132 and P-Smad3 protein in the myocardium, as well as reduction in TGF-β1-induced collagen synthesis and Smad3 phosphorylation in cardiac fibroblasts. Taken together, miR-132 inhibition ameliorated myocardial remodeling and diastolic dysfunction in HFpEF mice through downregulation of the miR-132/Smad3 pathway.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144325879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Kuang, Qijun Chen, Zenghui Liu, Limei Wu, Shaoguo Wu
{"title":"Types, Molecular Mechanisms and Potential Therapeutic Targets of Programmed Endothelial Cell Death in Atherosclerosis.","authors":"Lu Kuang, Qijun Chen, Zenghui Liu, Limei Wu, Shaoguo Wu","doi":"10.1097/FJC.0000000000001728","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001728","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic progressive disease that occurs in the inner walls of arteries. Endothelial dysfunction is a key component in the early stages of atherosclerosis. Unhealthy lifestyle factors (e.g., smoking), hypertension, hyperglycemia, and hyperlipidemia are important risk factors that may induce endothelial cell injury or even lead to cellular death. Hypertension contributes to AS by exerting mechanical stress that damages endothelial cells. Current studies have shown that vascular endothelial cells are mainly involved in programmed cell death pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, cuproptosis, parthanatos, and NETosis. This review synthesizes current knowledge on programmed cell death pathways in vascular endothelia during atherogenesis, delineating their triggering factors, molecular underpinnings, and potential regulatory targets.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144325880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Carolina Guido, Lucas Lage Marinho, Elaine Rufo Tavares, Natalia de Menezes Lopes, Déborah Lima Bispo, Marcelo Dantas Tavares de Melo, Fabiana Hanna Rached, Vera Maria Cury Salemi, Raul Cavalcante Maranhão
{"title":"Methotrexate improves left ventricle systolic and diastolic function in induced Takotsubo myocardiopathy rats.","authors":"Maria Carolina Guido, Lucas Lage Marinho, Elaine Rufo Tavares, Natalia de Menezes Lopes, Déborah Lima Bispo, Marcelo Dantas Tavares de Melo, Fabiana Hanna Rached, Vera Maria Cury Salemi, Raul Cavalcante Maranhão","doi":"10.1097/FJC.0000000000001730","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001730","url":null,"abstract":"<p><p>Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy which is associated with important morbidity and in-hospital mortality. Microvascular dysfunction, inflammation and fibrosis may play crucial roles in TTS pathophysiology. Here we investigated the effect of methotrexate (MTX), an antiproliferative and immunosuppressive drug, on ventricular function in a rat model of Takotsubo syndrome. TTS induction was performed in Wistar male rats with 2 subcutaneous injections of isoproterenol (ISO, 85mg/Kg), with a 24-hour interval. Twenty-seven animals were allocated to 3 groups: Sham: controls treated with saline solution; ISO: TTS-induced with ISO, treated with saline solution; MTX: TTS-induced with ISO, treated with MTX (1mg/Kg i.p.). Animals were treated once a week, for 4 weeks. After treatments, animals underwent an echocardiographic exam. Histology and protein expression of markers of apoptosis, angiogenesis, and fibrosis were performed. Linear correlation was used to test echocardiographic variables versus protein expression. MTX treatment improved LV the systolic and diastolic functions in TTS rats, shown by higher ejection fraction (66% vs. 44%, p<0.05) and normalized E/A ratio (1.6±0.3 vs. 3.4±0.7, p<0.05). MTX reduced myocardial fibrosis in subendocardium and interstitium and decreased expression of pro-apoptotic markers (caspase 3 and BAX/Bcl-2 ratio). Additionally, MTX-treated rats exhibited reduced hypoxia, as indicated by lower HIF-2α expression, and increased angiogenesis, evidenced by elevated VEGF. In conclusion, MTX treatment enhances cardiac function and decreases adverse remodeling in this TTS rat model, conceivably through anti-fibrotic and pro-angiogenic mechanisms. These findings suggest that MTX may be a promising therapeutic option for TTS, warranting further investigation.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144325878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Qian Feng, Ai Ping Deng, Yi Qin Wu, Cheng Zhe Cai, Xian Qu Ye, Ping Fang Liu, Xiang Jin Huang, Zhi Jun Li, Zhuo Fan Xu
{"title":"Cardiac-specific overexpression of Klotho attenuates paraquat-induced myocardial injury by enhancing the Nrf2/ARE signaling pathway.","authors":"Xiao Qian Feng, Ai Ping Deng, Yi Qin Wu, Cheng Zhe Cai, Xian Qu Ye, Ping Fang Liu, Xiang Jin Huang, Zhi Jun Li, Zhuo Fan Xu","doi":"10.1097/FJC.0000000000001721","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001721","url":null,"abstract":"<p><p>Paraquat, a widely used herbicide, is known to induce oxidative stress and inflammation, which leads to myocardial injury. Klotho, a protein with antioxidative and anti-inflammatory properties, has garnered as a potential cardioprotective factor. This study aimed to investigate whether cardiac-specific overexpression of klotho mitigates paraquat-induced myocardial injury through the activation of the NF-E2-related factor-2 (Nrf-2)/antioxidant response element (ARE) signaling pathway. Our results revealed that both mRNA and protein expressions of Klotho were significantly reduced in the myocardial tissue of paraquat-exposed rats. However, cardiac-specific overexpression of Klotho significantly restored Klotho levels and attenuated paraquat-induced myocardial injury, as evidenced by the decreased lactate dehydrogenase (LDH) and cardiac troponin I (cTnI) contents, and creatine kinase (CK) activity, alongside with apoptosis. Furthermore, cardiac-specific overexpression of Klotho inhibited oxidative stress and inflammation in myocardial tissue of paraquat-subjected rats. Mechanistically, Klotho activated of the Nrf2/ARE signaling pathway, upregulating cytoprotective genes such as NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate cysteine ligase catalytic (GCLC) subunit, and glutamate cysteine ligase modifier (GCLM) subunit. Our findings indicate that Klotho protects against paraquat-induced myocardial injury by suppressing oxidative stress and inflammation, primarily via the activation of the Nrf2/ARE signaling pathway. These results underscore the potential therapeutic role of Klotho in preventing paraquat-induced myocardial damage.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144302123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Graesser, Nikita Panyam, Xiaofeng Qian, Tan An Dang, Benedikt Niedermeier, Michael Winkler, Johannes Riechel, M Amin Sharifi, Christin Noecker, Carla Abrahamian, Alexander Dietrich, Hendrik B Sager, Heribert Schunkert, Ling Li, Thorsten Kessler
{"title":"Genetic exploration of targeting the transient receptor potential cation channel subfamily member 6.","authors":"Christian Graesser, Nikita Panyam, Xiaofeng Qian, Tan An Dang, Benedikt Niedermeier, Michael Winkler, Johannes Riechel, M Amin Sharifi, Christin Noecker, Carla Abrahamian, Alexander Dietrich, Hendrik B Sager, Heribert Schunkert, Ling Li, Thorsten Kessler","doi":"10.1097/FJC.0000000000001727","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001727","url":null,"abstract":"<p><p>The transient receptor potential cation channel subfamily member 6 (TRPC6) represents an emerging druggable target with a broad therapeutic spectrum. TRPC6 Inhibitors are currently investigated for focal segmental glomerulosclerosis (FSGS), acute respiratory distress syndrome due to COVID-19, and pulmonary hypertension. In the cardiovascular system, there is evidence that TRPC6 is critically involved in the development of cardiac hypertrophy, arrhythmia susceptibility and risk of restenosis after coronary stent implantation. However, data on systemic effects of TRPC6 modulation remain scarce. To assess the phenotypic consequences of inhibiting TRPC6 in different organ systems, we explored public databases to identify single nucleotide polymorphisms (SNPs) that are associated with TRPC6 expression in different tissues. A phenome-wide association study was then performed in 475,739 individuals of UK Biobank to associate genetically-mediated reduced TRPC6 expression with 64 phenotypes in nine organ/disease categories. Lower TRPC6 expression was nominally associated with reduced risk of anxiety, heart failure, and stroke, as well as an increased risk of venous thromboembolism, hypertension, appendicitis and liver cirrhosis. After correction for multiple testing, lower TRPC6 expression remained significantly associated with reduced risk of coronary artery disease and atrial fibrillation. Notably, no deleterious phenotypes were observed, suggesting a favorable profile of systemic TRPC6 inhibition. While these findings indicate potential therapeutic benefits, nominally associated phenotypes, however, mandate careful clinical investigation and provide a basis for further experimental exploration.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential Binding Affinities and Kinetics of Transthyretin Stabilizers.","authors":"Alan X Ji, Andreas Betz, Uma Sinha","doi":"10.1097/FJC.0000000000001726","DOIUrl":"10.1097/FJC.0000000000001726","url":null,"abstract":"<p><p>Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive, fatal disease. Dissociation of tetrameric transthyretin (TTR) is the triggering event in the pathogenic mechanism; destabilizing TTR mutations accelerate the process. The TTR stabilizers, tafamidis and acoramidis, are the only FDA approved treatments for patients with ATTR-CM. By mimicking the stabilizing characteristics of the super-stabilizing, disease-protecting variant T119M, we hypothesize that acoramidis displays differential TTR binding, kinetic stability, and tetramer stabilization compared with other TTR stabilizers, such as tafamidis and diflunisal. The TTR binding affinity and thermodynamic stability of TTR interaction of acoramidis and tafamidis were assessed by surface plasmon resonance (SPR) and microscale thermophoresis (MST). Tetrameric TTR stabilization by acoramidis, tafamidis, and diflunisal in the presence of plasma proteins against acidic denaturation was measured by immune blots. In kinetic studies, SPR demonstrated 4 times longer residence time for acoramidis bound to TTR compared with tafamidis. The dissociation constants were consistent with those determined by equilibrium measurements in MST. The affinity of acoramidis for purified TTR, as measured by MST, was 4 times higher than that of tafamidis. When tested at clinically relevant plasma concentrations, acoramidis stabilized TTR against acidic denaturation to a much higher extent (≥90%) than tafamidis or diflunisal. Of note, both tafamidis and diflunisal demonstrated partial stabilization of tetrameric TTR. Relative to other stabilizers, acoramidis is more potent as independently assessed by TTR binding affinity, kinetic stability, and acid-mediated denaturation. These properties may contribute to the ability of acoramidis to achieve near-complete stabilization of TTR in plasma samples.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic dysregulation of hydrogen sulfide as a driver of vascular disease.","authors":"Alexander E Berezin","doi":"10.1097/FJC.0000000000001725","DOIUrl":"https://doi.org/10.1097/FJC.0000000000001725","url":null,"abstract":"","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144225563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}