{"title":"The Foaming Process of Poly Styrene-Co-Acrylonitrile (SAN) with Co Blowing Agents","authors":"H. Azimi","doi":"10.22068/IJMSE.17.2.77","DOIUrl":"https://doi.org/10.22068/IJMSE.17.2.77","url":null,"abstract":"","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44088584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of Porous Poly(tetrafluoroethylene) Using a Partially Gasified Porogen","authors":"O. Kaliuzhnyi, V. Platkov","doi":"10.22068/IJMSE.17.2.13","DOIUrl":"https://doi.org/10.22068/IJMSE.17.2.13","url":null,"abstract":"","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43850292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Confined/Unconfined Crystallization of Poly(3-Hexylthiophene) in Melt/Solution Environments Containing Carbonic Materials and Correlated Thermal and Structural Behaviors","authors":"S. Agbolaghi","doi":"10.22068/IJMSE.17.2.39","DOIUrl":"https://doi.org/10.22068/IJMSE.17.2.39","url":null,"abstract":"","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49448231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. M. M. Janbesarayi, M. Mohebi, S. Baghshahi, S. Alem, E. Irom
{"title":"Preparation of a Mesoporous Ceramic Adsorbent Based on Iranian Domestic Kaolin to Utilize as Slow-Release Urea Fertilizer Medium","authors":"S. M. M. Janbesarayi, M. Mohebi, S. Baghshahi, S. Alem, E. Irom","doi":"10.22068/IJMSE.17.2.30","DOIUrl":"https://doi.org/10.22068/IJMSE.17.2.30","url":null,"abstract":"","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41308290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Different Heat Treatment Procedures on Duplex Stainless Steel Microstructures and Electrochemical Properties","authors":"M. Azadi, M. Ferdosi, H. Shahin","doi":"10.22068/IJMSE.17.1.91","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.91","url":null,"abstract":"In this paper, the effect of solutioning and various aging heat treatment processes on the microstructure, the hardness and electrochemical properties of a duplex stainless steel (DSS) were studied. The evaluation of the microstructure and phase compositions were carried out by the optical microscopy (OM) and the X-ray diffraction (XRD). Electrochemical behavior of specimens were evaluated by both potentiodynamic polarization and electrochemical impedance spectra (EIS) tests at 25 and 60 oC. The obtained results showed that the solutioning heat treatment increased corrosion rates with respect to the blank specimen. The aging process at 490 oC for 20 hrs increased the volume percent of the carbide phase to the highest value (25.1%) which resulted in an increase in the hardness value up to 170 VHN. The specimen which was aged at 540 oC for 10 h with the Cr7C3 size of 22.8 μm, exhibited the higher corrosion resistance at both temperatures of 25 and 60 oC with respect to other aged specimens. In addition, the temperature of 60 oC promoted the anodic reactions in 3.5 wt.% NaCl solution which decreased impedance modulus values significantly. Consequently, the carbide size was more effective parameter than the carbide content in predicting electrochemical behavior of such alloys.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47711341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review on Fabrication Methods, Characterization and Applications of Magnetic Iron Oxide Nanomaterials","authors":"T. Mandal, D. Roy","doi":"10.22068/IJMSE.17.1.124","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.124","url":null,"abstract":"Magnetic iron oxide nanomaterials (MIONs) have been extensively investigated for the various important applications. Coprecipitation, hydrothermal, high temperature decomposition of organic precursors, microemulsions, polyol methods, electrochemical methods, aerosol method, sonolysis and green synthesis processes for the fabrication of MIONs have been reviewed. Different characterization methods like XRD, SEM, EDX and TEM for the as prepared MION materials have been studied. Important applications of MIONs in the field of biomedical, nanorobotics and energy devices have also been addressed in this review. Target oriented drug delivery and hyperthermia applications of MIONs have also focused.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49406630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the First-Order Flotation Kinetics Models for Iranian Gilsonite","authors":"A. Bahrami, F. Kazemi, J. Sharif","doi":"10.22068/IJMSE.17.1.11","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.11","url":null,"abstract":"Kinetic models are the most important instruments to predict and evaluate the performance of flotation circuits. To determine the kinetic order and rate of flotation of a gilsonite sample, flotation experiments were carried out in both rougher and cleaner stages. Experiments conducted using the combinations of petroleum-MIBC, gas oil-pine oil, and one test without any collector and frother. Five first-order kinetic models were applied to the data obtained from the flotation tests by using the Matrix Laboratory software. Statistical analysis showed that the classic first-order model perfectly matched the rougher and cleaner results performed using the petroleum-MIBC combination. The kinetic constants (k) were calculated as 0.04 (s-1) and 0.01 (s-1) for the rougher and cleaner, respectively. Rougher and cleaner tests without collector and frother also matched with the modified gas/solid adsorption and rectangular models with the k values of 0.05 (s-1), and 0.01 (s-1), respectively. The relationship between flotation rate constant, maximum combustible recovery, and particle size were also studied. The results showed that the maximum flotation combustible recovery and flotation rate were ob ined with an intermediat particle size both in the rougher and cleaner flotation processes. The combustible recovery and flotation rate in the rougher flotation process were higher than that in the cleaner flotation process.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49507792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Silicon Direct Nitridation Kinetic By An Efficient and Simple Predictive Model Based on Group Method of Data Handling","authors":"E. Shahmohamadi, A. Mirhabibi, F. Golestani-Fard","doi":"10.22068/IJMSE.17.1.77","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.77","url":null,"abstract":"In the present study, a soft computing method namely the group method of data handling (GMDH) is applied to develop a new and efficient predictive model for prediction of conversion percentage of silicon. A comprehensive database is obtained from experimental studies in literature. Several effective parameters like time, temperature, nitrogen percentage, pellet size and silicon particle size are considered. The performance of the model is evaluated through statistical analysis. Moreover, the silicon nitridation was performed in 1573 k and results were evaluated against model results for validation of the model. Furthermore, the performance and efficiency of the GMDH model is confirmed against the two most common analytical models. The most effective parameters in estimating the conversion percentage are determined through sensitivity analysis based on the Gamma Test. Finally, the robustness of the developed model is verified through parametric analysis.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45123953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailoring Microstructure and Mechanical Properties of Nano/ultrafine Grained AA6063 Alloy Processed by Accumulative Roll Bonding Process","authors":"H. Jafarian, H. Miyamoto","doi":"10.22068/IJMSE.17.1.1","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.1","url":null,"abstract":"In the present work, accumulative roll bonding (ARB) was used as an effective method for the process of nano/ultrafine-grained AA6063 alloy. Microstructural characteristics indicate considerable grain refinement leading to an average grain size of less than 200 nm after 7 ARB cycles. Texture analysis showed that 1-cycle ARB formed a strong texture near the copper component ({112}<111>). However, texture transition appeared by increasing the number of ARB cycles and after the 7-cycle of ARB, the texture was mainly developed close to the rotated cube component ({100}<110>). The results originated from mechanical properties indicated a substantial increment in strength and microhardness besides a meaningful drop of ductility after the 7 ARB cycles.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermochemical Heat Storage Properties of Mechanical Activated Co3O4-5 wt. % Al2O3 and Co3O4-5 wt. % Y2O3 Composite Powders","authors":"A. Hasanvand, M. Pourabdoli, A. Ghaderi","doi":"10.22068/IJMSE.17.1.45","DOIUrl":"https://doi.org/10.22068/IJMSE.17.1.45","url":null,"abstract":"The main problem with cobalt oxide as a thermochemical heat storage material is its slow re-oxidation kinetics. In addition, redox (reduction and oxidation) behavior of as-received Co3O4 is degraded with increasing the number of redox cycles. To overcome this drawback, Al2O3 and Y2O3 were added to Co3O4 and effect of mechanical activation time (2, 4, 8, and 16 h) on the redox behavior (weight change value/rate, redox reversibility, reduction and re-oxidation values, and particle morphologies) of Co3O4-5 wt.% Al2O3 and Co3O4-5 wt. % Y2O3 composites was investigated using thermogravimetry method. The composite powder were studied by SEM, EDS, and X-ray map analyses before and after redox reactions. Results showed that increasing the mechanical activation time improves the redox kinetics of Co3O45wt. % Al2O3 in comparison with as-received Co3O4. Although, the alumina-containing samples, activated in short time showed the better redox kinetics than samples activated for longer times. It was found that increasing the activation time to more than 8 h for alumina-containing samples reduces the redox kinetics due to a decrease in the positive effect of Al2O3 in controlling the particle size growth and sintering. In the case of Co3O4-5wt. % Y2O3, an increase in activation time generally reduced the redox kinetics. As a result, redox reactions in a 16 h-activated Co3O4-5wt. % Y2O3 composite sample was completely stopped. In addition, results showed that weak performance of Co3O4-5 wt. % Y2O3 is related to intensive sintering and growth of cobalt oxide particles during redox reactions.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46067687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}