Georgia Koutsandria, R. Gentz, Mahdi Jamei, A. Scaglione, S. Peisert, C. McParland
{"title":"A Real-Time Testbed Environment for Cyber-Physical Security on the Power Grid","authors":"Georgia Koutsandria, R. Gentz, Mahdi Jamei, A. Scaglione, S. Peisert, C. McParland","doi":"10.1145/2808705.2808707","DOIUrl":"https://doi.org/10.1145/2808705.2808707","url":null,"abstract":"The trustworthiness and security of cyber-physical systems (CPSs), such as the power grid, are of paramount importance to ensure their safe operation, performance, and economic efficiency. The aim of many cyber-physical security techniques, such as network intrusion detection systems (NIDSs) for CPSs, is to ensure continuous reliable operation even in exposed network environments. But the validation of such methods goes well beyond standard network analysis, since meaningful tests must also integrate realistic understanding of the physical systems behavior and response to the network activity. Our goal in this paper is to showcase an example of a testbed environment that can support such validation. In it, real network traffic, emulating and industrial control network, interacts with simulated physical models in real-time, extending and leveraging \"hardware-in-the-loop\" and \"cyber-in-the-loop\" capabilities. The testbed is a bridge between theory and practice and offers a number of features, including network communications, data management, as well as the virtualization of cyber-physical state analytics performed by the NIDS. The traffic is captured by real network taps and is forwarded to a real data management environment, receiving also the data reports from the simulated industrial control environment. To illustrate the capabilities of our testbed we show how the data are cross-checked by a \"physics aware\" NIDS, identifying network traffic that does not comply with its cyber-physical security rules.","PeriodicalId":144851,"journal":{"name":"Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126220449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MiniCPS: A Toolkit for Security Research on CPS Networks","authors":"D. Antonioli, Nils Ole Tippenhauer","doi":"10.1145/2808705.2808715","DOIUrl":"https://doi.org/10.1145/2808705.2808715","url":null,"abstract":"In recent years, tremendous effort has been spent to modernizing communication infrastructure in Cyber-Physical Systems (CPS) such as Industrial Control Systems (ICS) and related Supervisory Control and Data Acquisition (SCADA) systems. While a great amount of research has been conducted on network security of office and home networks, recently the security of CPS and related systems has gained increased attention. Unfortunately, real-world CPS are often not open to security researchers, and as a result very few reference physical-layer processes, control systems and communication topologies are available. In this work, we present MiniCPS, a toolkit intended to alleviate this problem. The goal of MiniCPS is to create an extensible, reproducible research environment for network communications, control systems, and physical-layer interactions in CPS. Instead of focusing on a customized simulation settings for specific subsystems, the main goal is to establish a framework to connect together real CPS soft- and hardware, simulation scripts for such components, and physical-layer simulation engines. MiniCPS builds on Mininet to provide lightweight real-time network emulation, and extends Mininet with tools to simulate typical CPS components such as programmable logic controllers, which use industrial protocols (eg. EtherNet/IP, Modbus/TCP). To capture physical-layer interactions, MiniCPS defines a simple API to connect to physical-layer simulations. We demonstrate applications of MiniCPS in two example scenarios, and show how MiniCPS can be used to develop attacks and defenses that are directly applicable to real systems.","PeriodicalId":144851,"journal":{"name":"Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy","volume":"59 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130763400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}