International Journal of Renewable Energy Research最新文献

筛选
英文 中文
Thermal Conductivity of a Vacuum Fractal Solar Collector 真空分形太阳能集热器的热导率
IF 1
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i2.14191.g8730
{"title":"Thermal Conductivity of a Vacuum Fractal Solar Collector","authors":"","doi":"10.20508/ijrer.v13i2.14191.g8730","DOIUrl":"https://doi.org/10.20508/ijrer.v13i2.14191.g8730","url":null,"abstract":"","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67638913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Performance of Photovoltaic Thermal Solar Collectors using Twisted Absorber Tubes and Nanofluids with Optimal Design Parameters 利用扭曲吸收管和纳米流体优化设计参数提高光伏太阳能集热器性能
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.14163.g8799
{"title":"Enhancing the Performance of Photovoltaic Thermal Solar Collectors using Twisted Absorber Tubes and Nanofluids with Optimal Design Parameters","authors":"","doi":"10.20508/ijrer.v13i3.14163.g8799","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.14163.g8799","url":null,"abstract":"A Photovoltaic-Thermal-Solar-Collector (PVT) is a technology that combines the benefits of photovoltaic panels (PV) and solar-thermal-collectors. It can enhance the efficiency of PV by reducing its surface temperature while producing hot water. The PVT's photovoltaic, thermal, and combined-photovoltaic-thermal efficiencies with parallel twisted absorber tubes and nanofluids as working fluids have been determined. A total of 11 parallel twisted absorber riser tubes with headers were used. The optimum header tube diameter was 51mm using Computational-Fluid-Dynamics (CFD) simulations. The utilization of twisted tubes significantly improved the photovoltaic, thermal, and combined-photovoltaic-thermal efficiencies, with the combined-photovoltaic-thermal efficiency rising from 61.2% to 84.6% at a mass-flow-rate of 0.04kg/s and solar-irradiance-level of 800W/m 2 . The effect of employing nanofluids on the PVT system was investigated, with nanofluids contributing to even greater gains in combined photovoltaic-thermal efficiency, which increased from 84.6% to 88.2%. These findings provide valuable insights into the design of high-performance fluid-based PVT systems, highlighting the potential of twisted tubes and nanofluids for enhancing system efficiency.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135213710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and Experimental Investigation of Three-Phase Inductive Type Superconducting Fault Current Limiter based on Current Injection Method 基于电流注入法的三相电感式超导故障限流器设计与实验研究
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.14033.g8810
{"title":"Design and Experimental Investigation of Three-Phase Inductive Type Superconducting Fault Current Limiter based on Current Injection Method","authors":"","doi":"10.20508/ijrer.v13i3.14033.g8810","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.14033.g8810","url":null,"abstract":"","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135214211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Power Electronic Controller Based Algorithm for Output Power Prediction of a PV Panel 基于电力电子控制器的光伏板输出功率预测算法
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.13946.g8791
{"title":"A Power Electronic Controller Based Algorithm for Output Power Prediction of a PV Panel","authors":"","doi":"10.20508/ijrer.v13i3.13946.g8791","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.13946.g8791","url":null,"abstract":"The utilization of renewable energy sources, such as solar and wind power, has gained significant momentum in recent years due to concerns about the environmental impact of traditional fossil fuels and the desire for energy independence. Governments, organizations, and individuals around the world are investing in and implementing renewable energy systems at an increasing rate. One such issue is the uneven power generation in large solar panel farms, where different zones are affected by varying weather and sun irradiance conditions. This results in a disparity in power generation between zones. In order to address this problem, this paper proposes a solution of incorporating small PV panels that will act like a PV detector in each zone, which are affected by the same weather and irradiance conditions and have the same azimuth and tilt angles to estimate the output power of PV panels. The PV detector will be loaded to their maximum capacity using a Power Electronic Controller (PEC) of MPPT algorithms cascaded with a well-designed topology that maintain the MPPT is working at its maximum load in all cases. By comparing the instantaneous power generated and the maximum power that can be delivered by the PV detector to the PEC, the power of the zone can be accurately determined. In addition, to our MATLAB simulation that allow us to implement in real life our theory and being industry applicable with results approximately equal to results shown in MATLAB.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135214219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Turbine Siting and Wind Farm Layout in Indonesia 优化印尼风机选址和风电场布局
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.14070.g8806
{"title":"Optimizing Turbine Siting and Wind Farm Layout in Indonesia","authors":"","doi":"10.20508/ijrer.v13i3.14070.g8806","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.14070.g8806","url":null,"abstract":"Wind resource assessments are required to identify a specific area capable of producing valuable energy from wind speeds. This paper aims to optimize wind assessment through wind farm siting and layout in Indonesia’s semi-arid region. Wind data collected on Sumba Island over a one-year period was analyzed to assess the area's wind energy potential. Wind Atlas Analysis and Application Programme (WAsP) and Windographer were used to generate a generalized wind climate and resource maps for the area. Wind farm layout and preliminary turbine micro-sitting were completed with various scenarios in mind to achieve the best possible result. Four different scenarios are considered to maximize power output. There are 34 identical wind turbines with a unit capacity of 90 kW in Scenario 1. Scenario 2 includes 20 identical wind turbines with a total capacity of 3000 kW. In Scenario 3, 14 identical wind turbines with 225 kW of unit capacity are used. There are 12 identical wind turbines with a unit capacity of 250 kW in Scenario 4. The results showed that scenario 1 produced the highest total net Annual Energy Production (AEP) of 11,287 MWh/year with a 3.73 % wake loss. The minimum wake loss seemed to be 2.62 % in scenario 4, with a total net AEP of 10,22MWh/year.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135214228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart inverter-based PV-STATCOM power Compensation using BaPhin optimization Algorithm 基于BaPhin优化算法的智能逆变器PV-STATCOM功率补偿
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.13893.g8776
{"title":"Smart inverter-based PV-STATCOM power Compensation using BaPhin optimization Algorithm","authors":"","doi":"10.20508/ijrer.v13i3.13893.g8776","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.13893.g8776","url":null,"abstract":"Photovoltaic (PV) solar farms are typically resting at nighttime with their entire expensive assets unused, in which the PV-STATCOM can be utilized to provide voltage control during critical system needs on a 24/7 basis. In the nighttime, the entire inverter capacity is utilized for STATCOM operation. This research developed a smart optimized inverter for reactive power compensation in the distributed grid systems, and new optimized controller for current regulation, voltage regulation, reactive power control, and power factor regulation. The PV-STATCOM controller is optimized using the proposed BaPhin algorithm, which will compensate the voltage, current, real, and reactive power in the distribution system.One of the FACTS devices, the static synchronous compensator (STATCOM), controls the voltage-current components and balances the reactive power in the power system. The voltage, current, power factor, reactive power in the grid-connected PV system as well as in the inverter is regulated by the proposed BaPhin optimization algorithm, which optimally adjusts the proportional controller in the regulators. The performance of the proposed method is more effective in the reactive power compensation than the existing methods.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135213735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary Control of Islanded Microgrids Using cascade PID Controllers tuned by combined GA and TLBO Algorithm 基于遗传算法和TLBO算法联合整定的串级PID控制器的孤岛微电网二次控制
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.14083.g8801
{"title":"Secondary Control of Islanded Microgrids Using cascade PID Controllers tuned by combined GA and TLBO Algorithm","authors":"","doi":"10.20508/ijrer.v13i3.14083.g8801","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.14083.g8801","url":null,"abstract":"Electricity grids are now focusing on a new idea called \"microgrids\" (MG). The idea is to produce energy to reduce dependence on variable cost fuels and reduce harmful emissions into the atmosphere. The system under study is made up of a variety of energy sources, including controllable, renewable and non-controllable sources, as well as energy storage options. This combination is skillfully managed to ensure the MG's reliability and transparency in the face of intermittent power generation. Intermittent weather conditions from uncontrolled sources and loads, such as temperature, solar radiation, wind speed, etc., indicate the numerous disturbances to the MG. Due to the active power compensation, these disturbances affect the power quality, especially the frequency. In order to solve this problem, it is highly recommended to intelligently manage the sources that can be controlled in order to reduce the frequency variation. Using a dynamic model that uses a cascade combination of three proportional integral and derivative (PID) as a reliable frequency control under uncertainty, the controllable sources in this study are modified by a hybrid GA-TLBO. An autonomous MG is simulated in MATLAB/Simulink and tested under numerous circumstances to validate the proposed method for generating the given parameters to reduce the frequency variation in various scenarios.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135213987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy logic Based Hysteresis Current Control and Regenerative Braking of BLDC motor with Battery Equivalent Cell Modelling for Electric Vehicles 基于模糊逻辑的电动汽车无刷直流电机滞回电流控制与再生制动
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i3.14055.g8813
{"title":"Fuzzy logic Based Hysteresis Current Control and Regenerative Braking of BLDC motor with Battery Equivalent Cell Modelling for Electric Vehicles","authors":"","doi":"10.20508/ijrer.v13i3.14055.g8813","DOIUrl":"https://doi.org/10.20508/ijrer.v13i3.14055.g8813","url":null,"abstract":"","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135214474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Voltage Stability Issues in Distribution System Influenced By High PV Penetration and Its Mitigation Techniques 光伏高渗透影响配电系统电压稳定问题及缓解技术综述
IF 1
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i1.13388.g8678
{"title":"A Review of Voltage Stability Issues in Distribution System Influenced By High PV Penetration and Its Mitigation Techniques","authors":"","doi":"10.20508/ijrer.v13i1.13388.g8678","DOIUrl":"https://doi.org/10.20508/ijrer.v13i1.13388.g8678","url":null,"abstract":"","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67637426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Renewable Energy Literature in Turkey: Mapping Analysis of the Field and Future Study Suggestions on Overlooked Issues 土耳其的可再生能源文献:领域的测绘分析和对被忽视问题的未来研究建议
IF 1
International Journal of Renewable Energy Research Pub Date : 2023-01-01 DOI: 10.20508/ijrer.v13i1.13810.g8677
{"title":"Renewable Energy Literature in Turkey: Mapping Analysis of the Field and Future Study Suggestions on Overlooked Issues","authors":"","doi":"10.20508/ijrer.v13i1.13810.g8677","DOIUrl":"https://doi.org/10.20508/ijrer.v13i1.13810.g8677","url":null,"abstract":"","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67637882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信