{"title":"Financial Early-Warning Analysis of Big Data Industry Enterprises Based on Factor Analysis and Logistic Model","authors":"X. Luana, Hongmei Zhang","doi":"10.2991/dramclr-19.2019.36","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.36","url":null,"abstract":"On the basis of systematic research on financial early-warning research at home and abroad, this paper selects Chinese big data listed companies as research samples, constructs financial early-warning model of electronic information listed companies with Logistic regression method comprehensively, and analyzes its discriminating effect. The results show that it is an effective method to construct a financial early-warning model by using logistics regression method to help listed companies prevent financial risks. Keywords—financial early-warning model, financial risk, Logistic regression analysis 摘要—在对国内外财务预警研究进行系统研究 的基础上,选取我国大数据上市企业公司作为研究 样本,综合运用 Logistic 回归法构建电子信息上 市公司财务预警模型,并分析其判别效果。研究结 果表明,通过运用 logistic 回归法构建财务预警 模型来帮助上市公司防范财务风险是一种行之有效","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131210204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Approach to Improve Diffusion Coefficient of Geospatial Information Model","authors":"Chongfu Huang","doi":"10.2991/dramclr-19.2019.1","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.1","url":null,"abstract":"This paper proposes an approach to improve the diffusion coefficient of the geospatial information diffusion model. The diffusion coefficient calculated by the average distance formula is appropriately amplified to become the initial diffusion coefficient. Employing a search method, we take two test points in the search interval consisting of 0 and the initial diffusion coefficient. Comparing the errors of the two test points used in the geospatial information diffusion model, we adjust the search interval: if the error of the left test point is small, the left point of the new search interval is unchanged, and the original right point of search interval is replaced with the right test point; if the error of the right test point is small, The right point of the new interval is unchanged, and the original left point of search interval is replaced with the left test point. Repeatedly, the search interval is continuously narrowed until the distance between the two test points is less than a given value, then the search is stopped. Meanwhile, the test point with a small error will be an optimized diffusion coefficient. A case constructing a relationship between the background data and disaster, with a sample size of 30, shows that the diffusion coefficient can reduce error approximately 17%. Keywords—geospatial information diffusion, diffusion coefficient, search interval, test point, background data, disaster 摘要—本文提出了一种改进地理空间信息扩散模型中扩散 系数的方法。将平均距离公式计算的扩散系数进行适当放 大,成为初始化扩散系数。使用某种搜索法,在由 0 和初始 化扩散系数构成的搜索区间中取两个测试点。将两个测试点 分别用于地理空间信息扩散模型,比较它们的误差,调整搜 索区间:如果左测试点的误差小,则新搜索区间左端点不 变,将原搜索区间的右端点换成右测试点;如果右测试点的 误差小,则新搜索区间的右端点不变,将原搜索区间左端点 换成左测试点。如此反复,不断缩小搜索区间,直到两个测 试点的距离小于一个给定的值,则停止搜索时,并以误差较 较的小测试点,为优化的扩散系数。用容量为 30 的样本,构 建背景数据和灾情间关系的算例表明,扩散系数优化后,大 约能减小 17%的估计误差。 关键词—地理空间信息扩散, 扩散系数, 搜索区间, 测试点, 背景数据 I. 引言 大灾中的信息孤岛,比比皆是。由于具有非线性识 别能力,且能学习矛盾样本,地理空间信息扩散模型 [1],较之加权地理回归[2]和人工神经元网络[3],能更好地 推测出空白地理单元上的灾情,有效解决信息孤岛的问 题。优化模型中的扩散系数,是进一步提高推测结果精 度的一个重要途径。 地理空间信息扩散模型,是将灾区已观测的地理单 元上的背景数据和灾情形成的样本,视为小样本,用正 态信息扩散公式[4],对其进行集值化处理,构造出“背 景数据”和“灾情”之间的因果关系。据此,我们用空 白地理单元上的背景数据,可推导出该地理单元上灾 情。 地理空间信息扩散模型,是一个集值统计回归模 型。扩散公式中的扩散系数,决定着样本点的集值化程 度,对预测结果有明显的影响。扩散系数较大时,较多 的监测点从一个样本点获得有效信息;反之,点较少。 理论上,样本足够大时,扩散系数为零,样本点的信 息,没有扩散。传统统计回归,就是在没有扩散的情况 下进行。换言之,传统统计回归,依赖于大样本。 目前,信息扩散理论的基础比较稳固,应用涉及面 较广。人们常用式(1)的平均距离公式计算正态信息 扩散中的扩散系数 h[5]。","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115702187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Upper Tropical Cyclone on West Bank of Bohai Sea","authors":"Zhiming Yu, Siyao Wang","doi":"10.2991/dramclr-19.2019.25","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.25","url":null,"abstract":"Based on the data of FY-2E infrared cloud image, radar, micaps3.1, island observation station, large buoy, and numerical weather forecasting products, effects of tropical storm Damrey on Tangshan were analyzed, forecast and disaster cause of tropical storm Damrey were also analyzed. The results show that the mesoscale low pressure system, going into the west area of 38°N, 121°E, will move toward north fast along the 586 line of the subtropical high. When more than 39°N, the system will turn to northeast by the effect of westerlies, and move faster. Double effect of ultra low level southeast jet on the sea was obvious, not only is the power factor but also the water vapor factor. Strong precipitation and wind of Damrey appears at the point, which is the inflection point of the line 586 of the subtropical high on 500hpa upper weather map. Leting County flooded seriously because of the 5 consecutive rainstorms and the storm surge of Damrey. Keywords— Damrey; Forecast; Disaster; Storm surge 摘要—利用 FY-2E 红外云图、雷达、micaps3.1、海岛站、 大浮标站及数值产品检验资料,分析了进入渤海的热带风暴 “达维”对河北省唐山市的影响,对“达维”的预报和造成灾 害的成因进行了研究。结果表明:进入 38°N,121°E 以西的 中尺度低压系统,将会沿副高 586 线边缘快速北上,超过 39° N 时,在西风带作用下移向转为东北,移速加快。“达维”进 入渤海后海区超低空东南急流“双重效应”明显,既是动力因 子又是水汽短时输送因子,产生的强降水位于 500 百帕高空图 “586 脊线”拐点处;前期连续出现的五次暴雨和“达维”产 生的风暴潮使乐亭县出现了严重的内涝灾害。 关键词—“达维”,预报,灾害,风暴潮 I. 引言 台风的破坏力主要是由强风、暴雨和风暴潮三个因素 引起的,给沿海各省市的工农业生产、交通运输和人民 生命财产安全造成严重威胁和极大损失,一直被广大气 象工作者[1 2]所关注。2012 年 8 月 3 日-8 月 4 日位于山 东半岛北部“达维”台风北移及副热带高压东退,在渤 海西部海区-海岸带形成 3维空间有利于强降水的形势场 和 NE-SW 向次天气尺度雨带,并在秦皇岛海区中尺度 低层辐合风场、水汽因子耦合下,导致区域性大暴雨及 大风天气的发生。近年来,许多学者对如何避免和减轻 的热带气旋的损失进行了研究与探讨[3 4]开展过大规模 的热带气旋外场[5]监测及数值模拟[6 、7] 试验,对热带气 旋的运动突变、结构、强度变化和热带气旋暴雨[8 9]等方 面进行了一系列[10]的研究,一些科研成果在多次热带气 旋预报中得到了较好的应用。据统计,2005 年至 2017 年影响渤海及沿岸地区的热带气旋仅有 5 次,分别为 2005 年的“麦莎”、2011 年的“梅花”及“米雷”、2014 年的“麦德姆”和 2017 年的“海棠”。目前对于热带气 旋北上进入黄渤海后的移动路径 [11]、预报指标[12 13]及灾 害成因[14]仍处于探讨阶段,相关的研究很少。2012 年进 入渤海的“达维”是 1949 年以后登陆我国长江以北地区 最强的热带气旋,唐山市气象台对 “达维”进行了系统 的分析,做出了较准确的预报,进行了较成功的服务。 但在前期连续出现 5 次暴雨的背景下, 受“达维”造成 的大风、强降水和农历十五天文大潮影响,唐山东南部","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126293308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Harmonious Development of Ecological Civilization Construction and Financial Agglomeration in Guizhou","authors":"Xinpu Wang, Mu Zhang","doi":"10.2991/ieesasm-18.2019.17","DOIUrl":"https://doi.org/10.2991/ieesasm-18.2019.17","url":null,"abstract":"Based on the panel data of nine cities in Guizhou Province from 2013 to 2017, this paper constructs the evaluation index system of the coupling system of ecological civilization construction and financial agglomeration evaluation, and uses grey relational projection method and hesitant fuzzy language PROMETHEE method to measure the level of ecological civilization construction and financial agglomeration. The coupling coordination degree of ecological civilization construction and financial agglomeration and the space-time development trend of nine cities in Guizhou are calculated by using the coupling coordination model. The results show that: in terms of time, the coupling coordination degree of nine prefectures in Guizhou has been fluctuating continuously in the past five years, with relatively small amplitude and relatively stable in Southwest Guizhou. Spatially, Guiyang City and Zunyi City rank first and second in the province in the degree of coupling and coordination, achieving barely coordinated, while the remaining seven cities and municipalities have different degrees of imbalance. At the same time, it is pointed out that there exists regional imbalance in the process of coordinated development of ecological civilization construction and financial agglomeration in Guizhou, and the imbalance is aggravated. Keywords—Construction of Ecological Civilization; Financial Agglomeration; Coupled Coordination; Grey Relational Projection Method; Hesitant Fuzzy Language PROMETHEE Method 摘要—本文基于 2013-2017 年贵州省九个地州市的面板数 据构建生态文明建设和金融集聚评价耦合系统评价指标体系, 利用灰色关联投影法和犹豫模糊语言 PROMETHEE 方法测算生 态文明建设水平和金融集聚水平,并运用耦合协调模型计算 贵州九个地州市生态文明建设与金融集聚的耦合协调度以及 时空发展趋势。研究结果表明:从时间上看,贵州九个地州 市的耦合协调度在近五年来呈现出不断波动的状态,波幅较 小,比较平稳的是黔西南州;从空间上看,贵阳市和遵义市 的耦合协调度位列全省第一和第二,达到勉强协调,其余七 个地州市均存在不同程度失衡。同时还指出,贵州生态文明 建设与金融集聚耦合协调发展过程中存在区域不平衡现象, 且不平衡现象有所加剧。 关键词—生态文明建设,金融集聚,耦合协调,灰色关联 投影法,犹豫模糊语言 PROMETHEE 方法","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114208098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristics and Cause Analysis of Local Rainstorms When Subtropical High Moving North","authors":"Yuhong Wang, Jiangbo Li, Y. Duan","doi":"10.2991/dramclr-19.2019.27","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.27","url":null,"abstract":"Using conventional meteorological observation data, automatic weather station data, radar data and Final Operational Global Analysis (FNL) data, and focusing on the local rainstorms of Hebei province in the process of subtropical high moving north on 20-22 July 2017, the meso-scale characteristics and reasons are analyzed in this paper. Firstly, the local rainstorms belong to the heavy rain caused by summer monsoon moving north, and the distribution of rainfall is extremely uneven, with 3 strong rainfall centers located in Qinhuangdao, Shijiazhuang, and Langfang. Secondly, the difference of heat and water vapor causes the different characteristics of 3 centers: local rainstorm in Qinhuangdao are accompanied by large-scale energy front and water vapor transportation, and radar echoes are banded and mixed; while local rainstorms in Shijiazhuang and Langfang occur at high temperature and moisture environment without large-scale water vapor transportation, and the radar echoes are dense block convective echoes. Lastly, the trigger mechanisms of the 3 strong rainfall centers are different: the local rainstorm in Qinhuangdao is triggered by the shear lines in middle and low level, and multiple convective cells affect successively resulting in “train effect”; while the local rainstorms generated by meso-scale convective systems in Shijiazhuang and Langfang are triggered by the northeast or east wind in the boundary layer. Keywords—subtropical high moving north, local rainstorm, radar characteristics, trigger mechanism 摘要—利用常规气象观测资料、自动站资料、雷达和 FNL 再分析资料,对 2017 年 7 月 20-22 日副高持续北抬过程中的 河北省局地暴雨中尺度特征进行了深入分析,并就其成因进 行了探讨。首先,本次局地暴雨属于夏季风北上产生的暴 雨,雨量分布极为不均,有 3 个强降水中心,分别位于秦皇 岛、石家庄、廊坊。其次,环境热力和水汽的差异导致 3 个 强降水中心的特征不同:秦皇岛的局地暴雨伴随有天气尺度 的能量锋和水汽输送,雷达回波呈带状混合性回波;石家庄 和廊坊的局地暴雨发生在高温高湿的环境中,没有天气尺度 的水汽输送,雷达回波为结构密实的块状对流回波。最后,3 个强降水中心的触发机制不同:秦皇岛局地暴雨由中低层切 变线触发,多个对流单体相继影响,造成列车效应;石家庄 和廊坊的局地暴雨由边界层东北风或偏东风渗透触发中尺度","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126638442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengyu Yan, Guohua Zhang, Zhizheng Mao, Haoye Liu, Yang Li
{"title":"Comparative Study of Land Wind and Sea Wind in Qinhuangdao Based on Large Data Analysis","authors":"Chengyu Yan, Guohua Zhang, Zhizheng Mao, Haoye Liu, Yang Li","doi":"10.2991/dramclr-19.2019.19","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.19","url":null,"abstract":"Using the mobile weather station wind data installed on the \"Prince\" cruise ship on Qinhuangdao from August 2 to 10, 2016, the wind speed(sea wind) on the cruise ship route was obtained using the true wind observation algorithm. A comparative analysis of the meteorological observation station(near-shore wind) in the Haigang District closest to this cruise ship terminal and the Qinhuangdao National Basic Weather Station(land wind) shows that when controlled by the weak pressure field, the sea wind speed of Qinhuangdao is generally greater than the near-shore wind speed and the land wind speed about 1 to 2 wind levels. The use of near-shore wind speed to revise the sea wind speed is slightly better than the use of land wind speed to revise the sea wind speed; The sea winds are generally deflected clockwise from the near-shore winds and the land winds.However, it is unrealistic to use the near-shore wind or land wind direction to accurately adjust the sea wind direction. Keywords— Land wind; near-shore wind; sea wind; true wind algorithm; Qinhuangdao 摘要—利用 2016 年 8 月 2-10 日秦皇岛“王子号”游船上 安装的移动气象站风资料,采用真风观测算法得到游船航线上 的海上风向风速(海上风),与距此游船码头最近的海港区求 仙公园气象观测站(近岸风)、秦皇岛国家基本气象站资料(陆 上风)进行对比分析,结果表明:当受弱气压场控制时,秦皇 岛近海风速一般大于近岸风速和陆上风速约 1~2 个风级,用近 岸风速订正海上风略优于用陆上风速订正海上风速;海上风向 一般较陆上风、近岸风顺时针偏转,但偏转角度差异很大,若 想利用近岸风或陆上风风向精确调整海上风风向不现实。 关键词:陆上风,近岸风,海上风,真风算法,秦皇岛","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130951666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical Analysis of Background Data in Internet of Intelligences","authors":"Wen Tian, Chongfu Huang","doi":"10.2991/dramclr-19.2019.34","DOIUrl":"https://doi.org/10.2991/dramclr-19.2019.34","url":null,"abstract":"The online computing module supported by geospatial information diffusion technology can obtain complete disaster data through incomplete background data in the early stage of disasters, thus making up the disaster data blank and supporting accurate rescue. Among them, with the advent of the Internet era, the acquisition of background data will realize the transition from traditional static acquisition to dynamic acquisition with networked disaster data as the main body. Systematic background data statistics is the basic work. Therefore, this paper will (1) discuss the concept of background data; (2) take flood disaster as an example, comprehensively consider the rapid assessment indicators of disasters at home and abroad with the theme of disaster relief, and form an online calculation for supporting disaster relief resource matching and disaster relief intelligent network. Background data indicator system and its data collection index items; (3) Statistics and analysis of relevant background data sources of domestic open database and web page data, forming a list of background data sources for collecting data; (4) For example, in Santai County, Sichuan Province, based on the existing database source data items, combined with the MySQL database architecture, the background database design scheme in the disaster relief intelligent network is constructed to provide a data foundation for the online calculation of the disaster relief intelligent network. Keywords—Internet of Intelligences; background data; flood disaster 摘要—由地理空间信息扩散技术支持的救灾智联网在线计 算模块可以在灾害初期通过不完整的背景数据获得完整的灾 害数据,从而弥补灾情数据空白、支持精准救援。其中,随 着互联网时代的到来,背景数据的获取将实现从传统静态化 获取向以网络化灾情数据为主体的动态化获取转变,系统性 的背景数据统计是基础性工作。因此,本文将(1)讨论背景 数据的概念;(2)以洪涝灾害为例,综合考虑以救灾为主题 的国内外灾情快速评估指标,形成用于支持救灾资源匹配、 救灾智联网在线计算的背景数据指标体系及其数据采集指标 项;(3)对国内开放性数据库和网页数据等多途径的相关背 景数据源进行统计和分析,形成用于采集数据的背景数据源 列表;(4)以四川省三台县为例,以现有数据库源数据项为 根基,结合 MySQL 数据库体系结构,构建救灾智联网中背景 数据库设计方案,为救灾智联网的在线计算提供数据基础。 关键词—智联网,背景数据,洪涝灾害","PeriodicalId":142201,"journal":{"name":"Proceedings of the Fourth Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions (DRAMCLR 2019)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129793959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}