{"title":"An Analysis of the Atlantic Ocean Wave Via Random Cosine and Sine Alternate Wavy ARIMA Functions","authors":"R. O. Olanrewaju, M. A. Jallow, S. A. Olanrewaju","doi":"10.5815/ijisa.2022.05.03","DOIUrl":"https://doi.org/10.5815/ijisa.2022.05.03","url":null,"abstract":"In this research, alternate random wave sine and cosine for discrete time-varying processes via Autoregressive Integrated Moving Average (ARIMA) in a deterministic manner were developed. The mean and variance of the cosine and sine periodical time-varying wavy functions were derived such that Maclaurin series via full Taylor series expansion was used to rewrite the mean and variance functions. Wavy buoys of sea temperature, significant wave height, and mean wave direction of Belmullet Inner (Berth B) and Belmullet Outer (Berth A) of the Atlantic Ocean based on the west coastal of Ireland were subjected to the random sine and cosine wave functions of ARIMA. Cosine-ARIMA (1, 1, 3) and cosine-ARIMA (0, 1, 1) were the sea temperature inner and outer oceanic climate wave buoys of Berth B and A with time-periods of 8437.5 and 8035.714 respectively. Cosine-ARIMA (5, 1, 0) gave minimum performance for peak direction of inner and outer oceanic climate wave buoys of both Berth B and A, but with different time-periods of 168750 and 56250 respectively. Lastly, cosine-ARIMA (2, 1, 2) and sine-ARIMA (0, 1, 5) put in the ideal generalization for wave height of Berth B and A with the same associated wave time-periods of 56250, that is, it takes 56250 seconds to complete one swaying cycle.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73847192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Crop-Weather Models Using Gaussian Process Regression for the Prediction of Paddy Yield in Sri Lanka","authors":"P. Ekanayake, L. Wickramasinghe, J. Jayasinghe","doi":"10.5815/ijisa.2022.04.05","DOIUrl":"https://doi.org/10.5815/ijisa.2022.04.05","url":null,"abstract":"This research introduces machine learning models using the Gaussian Process Regression (GPR) depicting the association between paddy yield and weather in Sri Lanka. All major regions in the island with most contribution to the total paddy production were considered in this research. The climatic factors of rainfall, relative humidity, minimum temperature, maximum temperature, average wind speed, evaporation, and sunshine hours were considered as input (independent) variables, while the paddy yield was the output (dependent) variable. The collinearity within each pair of independent and dependent variables was determined using Spearman’s and Pearson’s correlation coefficients. Data sets corresponding to the two main annual paddy cultivation seasons since 2009 were trained in MATLAB to develop crop-weather models. The most appropriate Kernel function was chosen from among four types of Kernels viz. Rational Quadratic, Exponential, Squared Exponential, and Matern 5/2 based on their degree of coherence in modeling. This approach exploits the full potential of GPR in developing highly accurate crop-weather models. The performance of the crop-weather models was measured by the Correlation Coefficient, Mean Absolute Percentage Error, Mean Squared Error, Root Mean Squared Error Ratio, Nash Number and the BIAS. All the GPR-based models proposed in this paper are highly accurate in terms of the aforementioned evaluation metrics. Accordingly, when the climatic data are known or projected, the paddy yield and thereby the harvest of Sri Lanka can be predicted precisely by using the proposed crop-weather models.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84009066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Care4Student: An Embedded Warning System for Preventing Abuse of Primary School Students","authors":"K. Akyol, Abdulkadir Karacı, M. Tiftikçi","doi":"10.5815/ijisa.2022.04.01","DOIUrl":"https://doi.org/10.5815/ijisa.2022.04.01","url":null,"abstract":"Child abuse is a social and medical problem that has negative effects on the individual development of the child and can lead to mental disorders such as depression and post-traumatic stress disorder in both short and long-term mental health. Therefore, any abuse that the child may encounter should be immediately intervened. This paper presents the design of an integrated embedded warning system that includes an embedded system module, a server-based module, and a mobile-based module as a solution to concerns of ensuring the safety of students in places where there are fewer safety measures. Our solution aims to ensure that the school management team is quickly informed about the adverse situation that primary school students may encounter and able to respond to them. In this context, this system activates the warning status when it correctly detects the phrases 'help me' and 'give it up'. Thus, any negativity that may be encountered in a closed environment is prevented. The embedded warning system detected correctly the phrase \"help me\" with 80%, and the phrase \"give it up\" with 75%.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81225755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debadrita Panda, S. Mukhopadhyay, Rajarshi Saha, P. Panigrahi
{"title":"BoPCOVIPIP: Capturing the Dynamics of Marketing Mix Among Bottom of Pyramid Consumers during COVID-19","authors":"Debadrita Panda, S. Mukhopadhyay, Rajarshi Saha, P. Panigrahi","doi":"10.5815/ijisa.2022.04.04","DOIUrl":"https://doi.org/10.5815/ijisa.2022.04.04","url":null,"abstract":"The behaviour of consumers mostly follows the guidelines derived from marketing theories and models. But under some unavoidable circumstances, the consumers show a complete deviation compared to their existing consumption pattern, purchase behaviour, decision-making and so on. Under similar circumstances, this study aims to capture both urban and rural Bottom of the Pyramid (BoP) consumers’ perceptions of various marketing mixes during the COVID-19 pandemic situation. With a sample size of 378 and 282, the perception towards different marketing mixes has been captured for Pre-COVID and During-COVID periods, respectively. The adopted quantitative analysis indicates a difference in perception towards marketing mix During COVID compared to Pre-COVID. Moreover, the selection of West Bengal, India, as an area of research fulfills the BoP literature’s existing prominent research gap. This study also comes with the potential to assist marketers and the Fast-Moving Consumer Goods (FMCG) industry in framing strategies to target BoP consumers.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74285598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Rough Set Theory for Reasoning on Vague Ontologies","authors":"M. Bourahla","doi":"10.5815/ijisa.2022.04.03","DOIUrl":"https://doi.org/10.5815/ijisa.2022.04.03","url":null,"abstract":"Web ontologies can contain vague concepts, which means the knowledge about them is imprecise and then query answering will not possible due to the open world assumption. A concept description can be very exact (crisp concept) or exact (fuzzy concept) if its knowledge is complete, otherwise it is inexact (vague concept) if its knowledge is incomplete. In this paper, we propose a method based on the rough set theory for reasoning on vague ontologies. With this method, the detection of vague concepts will insert into the original ontology new rough vague concepts where their description is defined on approximation spaces to be used by extended Tableau algorithm for automatic reasoning. A prototype of Tableau's extended algorithm is developed and tested on examples where encouraging results are given by this method to demonstrate that unlike other methods, it is possible to answer queries even in the presence of incomplete information.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80352794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Hybrid Approach for Detection of Type-2 Diabetes in Women Using Lasso Regression and Artificial Neural Network","authors":"Y. Singh, Mahendra Tiwari","doi":"10.5815/ijisa.2022.04.02","DOIUrl":"https://doi.org/10.5815/ijisa.2022.04.02","url":null,"abstract":"Diabetes is a life-threatening and long-lasting illness that produces high blood glucose levels. Diabetes may cause various diseases, including liver disease, blindness, amputation, urinary organ infections, etc. This research work aims to introduce a hybrid framework to enhance outcomes predictability and interoperability with reduced ill-posed problems, over-fitting problems, and class imbalance problems for diagnosing diabetes mellitus using data mining techniques. Diabetes may be recognized in many ways. One of these methods is data mining techniques. The use of data mining to medical data has yielded meaningful, significant, and effective results that may improve medical expertise and decision-making. This study suggests a hybrid technique for detecting DM that combines the lasso regression algorithm with the artificial neural network (ANN) classifier algorithm. The Lasso regression technique is used for variable selection and regularization. Because the dataset was shrunk, the computing time was considerably minimized. The ANN classifier received the Lasso regression output as an input and classified patients correctly as diabetic and non-diabetic, i.e., tested positives and negatives. The Pima Indians dataset was used in this experiment, consisting of 768 samples of female participants who are diabetic and non-diabetic. According to experimental observations, the proposed hybrid technique achieved 93% classification accuracy for predicting diabetes mellitus. The experimental results showed that our proposed method had a classification accuracy of 93% for determining whether a patient has diabetes or not. The experimental outcomes demonstrated that a hybrid data-mining approach might assist clinicians in making better diagnoses when identifying diabetes patients.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"127 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85118893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Review of Machine Learning Techniques for Predicting the Outbreak of Covid19 Cases","authors":"A. Santra, A. Dutta","doi":"10.5815/ijisa.2022.03.04","DOIUrl":"https://doi.org/10.5815/ijisa.2022.03.04","url":null,"abstract":"At present, the whole world is experiencing a huge disturbance in social, economic, and political levels which may mostly attributed to sudden outbreak of Covid-19. The World Health Organization (WHO) declared it as Public Health crisis and global pandemic. Researchers across the globe have already proposed different outbreak models to impose various control measures fight against the novel corona virus. In order to overcome various challenges for the prediction of Covid-19 outbreaks, different mathematical and statistical approaches have been recommended by the researchers. The approaches used machine learning and deep learning based techniques which are capable of prediction of hidden patterns from large and complex datasets. The purpose of the present paper is to study different machine learning and deep learning based techniques used to identify and predict the pattern and performs some comparative analysis on the techniques. This paper contains a detailed summary of 40 paper based on this issue along with the use of method they applied to obtain the purpose. After the review it has been found that no model is fully capable of predicting it with accuracy. So, a hybrid model with better training should be employed for better result. This paper also studies different performance measures that researchers have used to show the efficiency of their proposed model.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85814595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fuzzy Approach to Fault Tolerant in Cloud using the Checkpoint Migration Technique","authors":"Noshin Hagshenas, Musa Mojarad, Hassan Arfaeinia","doi":"10.5815/ijisa.2022.03.02","DOIUrl":"https://doi.org/10.5815/ijisa.2022.03.02","url":null,"abstract":"Fault tolerance is one of the most important issues in cloud computing to provide reliable services. It is difficult to implement due to dynamic service infrastructures, complex configurations and different dependencies. Extensive research efforts have been made to implement fault tolerance in the cloud environment. Many studies focus only on fault detection and do not consider fault tolerance. For this reason, in this paper, in addition to recognizing the nature of the fault, a fuzzy logic-based approach is proposed to provide an appropriate response and increase the fault tolerance in the cloud environment. Checkpoint-based migration technique is used to increase fault tolerance. Using a checkpoint during migration can reduce time and processing costs and balance the load between virtual machines in the event of a fault. The simulation is performed according to the data center of Vietnam Telecommunications Company (VDC). The results of the proposed method in a period of 60 minutes show 98.03% fault detection accuracy, which is 4.5% and 4.1% superior to FLPT and PLBFT algorithms, respectively.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"188 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85457639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards an Intelligent Approach to Workflow Integration in a Quality Management System","authors":"Mohamed Nazih Omri, Hadhemi Ben Aonne","doi":"10.5815/ijisa.2022.03.05","DOIUrl":"https://doi.org/10.5815/ijisa.2022.03.05","url":null,"abstract":"Among the most important activities within a company we find that of quality management. This activity represents reflects the most rigorous way possible for a better organization of establishments in order to offer the best service to customers and to the various members of these establishments. This activity of quality management is a very delicate and sensitive task due to the large number of documents and business processes that are handled on a cyclical basis. For this reason, setting up a reliable and efficient system for managing the different aspects of the quality management process becomes a challenge for any company that seeks excellence. This article proposes a new intelligent approach to the need of the management of human and commercial resources within the companies for a good management of the process of quality management according to its own conception. Our approach allows any quality management manager to manage the different modules of a QMS according to the ISO 9001 standard through the different interfaces offered by our solution. The monitoring phase of this process through the implementation of a workflow orchestrator, jBpm.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72517902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Planning of Electric Vehicle Charging Station along with Multiple Distributed Generator Units","authors":"Devisree Chippada, M. D. Reddy","doi":"10.5815/ijisa.2022.02.04","DOIUrl":"https://doi.org/10.5815/ijisa.2022.02.04","url":null,"abstract":"Saving energy through the minimization of power losses in a distribution system is a key activity for efficient operation. Distributed Generation (DG) is one of the most efficient approaches to minimize losses. With increase in installation of Electric Vehicle Charging Stations (EVCSs) for Electrical Vehicles (EVs) in larger scale, optimal planning of EVCSs becomes a major challenge for distribution system operator. With increased EV load penetration in the electricity system, generation-demand mismatch and power losses increases. This results in poor voltage level, and deterioration in voltage stability margin. To mitigate the adverse impacts of increasing EV load penetration on Radial Distribution Systems (RDS), it is essential to integrate EVCSs at appropriate locations. The EVs integration into smart distribution systems involves Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) in charging and discharging modes of operation respectively for exchange of power with the grid thus resulting in energy management. The inappropriate planning of EVCSs causes a negative impact on the distribution system such as voltage deviation and an increase in power losses. In order to minimize this, DG units are integrated with EVCSs. The DGs assist in keeping the voltage profile within limitations, resulting in reduced power flows and losses, thereby enhancing power quality and reliability. Therefore, the DGs should be optimally allocated and sized along with the EVCS to avoid problems such as protection, voltage rise, and reverse power flow problems. This paper showcases a method to minimize losses using optimal location and sizing of multiple DGs and EVCS operating in G2V and V2G modes. The sizing and location of different types of DG units including renewables and non-renewables along with EV charging station is proposed in this study. This methodology overall reduces the power losses and also improves voltages of the network. The implementation is done by using the Simultaneous Particle Swarm Optimization technique (PSO) for IEEE 15, 33, 69 and 85 bus systems. The results indicate that the proposed optimization technique improves efficiency and performance of the system by optimal planning and operation of both DGs and EVs.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"337 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76149975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}