International Journal of Machine Tools & Manufacture最新文献

筛选
英文 中文
Mechanisms of tool-workpiece interaction in ultraprecision diamond turning of single-crystal SiC for curved microstructures 弯曲微结构单晶SiC超精密金刚石车削刀具-工件相互作用机理
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-10-01 DOI: 10.1016/j.ijmachtools.2023.104063
Weihai Huang, Jiwang Yan
{"title":"Mechanisms of tool-workpiece interaction in ultraprecision diamond turning of single-crystal SiC for curved microstructures","authors":"Weihai Huang,&nbsp;Jiwang Yan","doi":"10.1016/j.ijmachtools.2023.104063","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104063","url":null,"abstract":"<div><p><span>Single-crystal silicon carbide (SiC) is one of the most attractive materials for electronics and optics but extremely difficult to cut owing to its hard and brittle properties. While in previous studies, the focus has been placed on machining flat surfaces, in this study, the mechanisms of tool-workpiece interaction in cutting curved microstructures on 4H–SiC (0001) were explored through the ultraprecision diamond turning of micro-dimples. The surface/subsurface of both machined workpieces and used diamond tools were characterized, and the machining characteristics, such as chip formation and cutting forces, were also investigated. It was found that microcracks occurred easily in the feed-in/cut-in area of the dimples, which is caused by a large friction-induced tensile stress due to a large thrust force. The dimples located on the secondary cleavage directions &lt;10−10&gt; (S-dimples) were easy to produce crack-free surfaces, while the dimples located on the primary cleavage directions &lt;−12−10&gt; (P-dimples) were very prone to cause cracks on surfaces, even though the chips were formed in a </span>ductile mode<span>. The dimples located on the in-between direction (I-dimples) were moderately prone to surface cracking. It was also found that although the S-dimple has a crack-free surface, it has the thickest subsurface damage (SSD) layer containing a disordered layer, dislocations, and stacking faults; the SSD layer of the P- and I-dimples do not contain stacking faults; and the SSD layer of the I-dimple is the thinnest. Flank wear<span><span> with nanoscale<span><span> grooves on the diamond tool was significant without edge chipping and diamond graphitization detected. By optimizing the cutting conditions, a crack-free micro-dimple array was fabricated with nanometric surface roughness. The findings from this study provide guidance for the manufacture of curved </span>SiC parts with high surface integrity, such as molds for replicating </span></span>microlens arrays<span> and other freeform surfaces on glass.</span></span></span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"191 ","pages":"Article 104063"},"PeriodicalIF":14.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49888444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Energy field assisted metal forming: Current status, challenges and prospects 能量场辅助金属成形:现状、挑战和前景
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-09-20 DOI: 10.1016/j.ijmachtools.2023.104075
H. Li , L.F. Peng , B. Meng , Z.T. Xu , L.L. Wang , G. Ngaile , M.W. Fu
{"title":"Energy field assisted metal forming: Current status, challenges and prospects","authors":"H. Li ,&nbsp;L.F. Peng ,&nbsp;B. Meng ,&nbsp;Z.T. Xu ,&nbsp;L.L. Wang ,&nbsp;G. Ngaile ,&nbsp;M.W. Fu","doi":"10.1016/j.ijmachtools.2023.104075","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104075","url":null,"abstract":"<div><p>To meet the various and critical manufacturing requirements including high precision, low cost, good manufacturability, and more demanding from product service and performance aspects such as high performance, light-weight, less energy consumption and low carbon emissions in today's era of rapid product development with short product life circle, it is crucial to re-innovate and re-invigorate metal forming technologies and enable it to play an even more important role in manufacturing arena. Historically, introducing new kinds of energy fields into the forming process drives the innovative advance and rejuvenating of forming technologies due to the physically interactive mechanisms of energy field and certain material deformation behaviors such as thermal-mechanical coupling effects. In this paper, a classification of energy-aided metal forming processes is orchestrated and presented, and three kinds of energy-assisted metal forming technologies, viz., electrically-assisted forming, ultrasonic vibration assisted forming, and electromagnetic field supported forming, are reviewed and delineated as they are currently receiving a widespread attention with promising application potentials. In this paper, the physical essence and the effects of these introduced energy fields on deformation behavior, process performance, microstructure evolution are elucidated and analyzed. The constitutive modeling of these forming processes is recapitulated, and the newly established energy field assisted metal forming technologies are exemplified and discussed. Based on the advantages and limitations of these unique metal forming processes assisted by additional energy fields, the process capacity and application potentials are unraveled and examined. Finally, from the aspects of exploring physical mechanisms, establishing high-fidelity models, coupling the multiple energy fields, and developing intelligent equipment and realizing these forming processes, the current challenges and future prospects were discussed, summarized and articulated in such a way to present a panorama of the research, development and application of the energy-assisted forming technologies.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"192 ","pages":"Article 104075"},"PeriodicalIF":14.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49831301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-mechanism-based twinning evolution in machined surface induced by thermal-mechanical loads with increasing cutting speeds 随着切削速度的提高,热机械载荷引起的加工表面基于多机制的孪晶演化
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-09-08 DOI: 10.1016/j.ijmachtools.2023.104074
Baochen Li, Hongguang Liu, Jun Zhang, Binbin Xu, Wanhua Zhao
{"title":"Multi-mechanism-based twinning evolution in machined surface induced by thermal-mechanical loads with increasing cutting speeds","authors":"Baochen Li,&nbsp;Hongguang Liu,&nbsp;Jun Zhang,&nbsp;Binbin Xu,&nbsp;Wanhua Zhao","doi":"10.1016/j.ijmachtools.2023.104074","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104074","url":null,"abstract":"<div><p><span><span><span>Microstructural features are an important factor in the evaluation of machined surface integrity. In particular, twins and twin boundaries have a significant impact on the physical and mechanical properties of components. This study investigates twin boundary evolution mechanisms in the machined surface during orthogonal cutting of oxygen-free-high-conductivity copper with cutting speeds ranging from 125 m/min to 2000 m/min. Pertinent features including twin boundaries, grain morphologies, textures, etc. Are characterized by </span>electron backscattered<span> diffraction and transmission electron microscope. The results show that the machined surface is divided into the refined layer, the deformed layer, and the matrix. An abnormal gradient distribution of a 60°&lt;111&gt; twin boundary is discovered for the first time. Specifically, the annealing twins mostly diminish in the deformed layer and regenerate in the refined layer. In the refined layer, a temperature-dominated process of twin formation and dynamic recrystallization occur. In the deformed layer, the </span></span>resolved shear stress<span> along the twin system is calculated through a novel approach, which reveals the stress-induced detwinning mechanism. The results of this research are beneficial for understanding both the deformation mechanism of medium </span></span>stacking fault energy face-centered cubic metal under extreme loading conditions and the underlying effects of twins on the mechanical properties of machined surface.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"192 ","pages":"Article 104074"},"PeriodicalIF":14.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49831300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An indirect hot form and Quench (HFQ) for manufacturing components of aluminum alloy sheets and comparison with direct HFQ 一种制造铝合金薄板零件的间接热成形和淬火方法,并与直接热成形的比较
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-29 DOI: 10.1016/j.ijmachtools.2023.104073
Ruiqiang Zhang, Wei Wang, Jianguo Lin, Trevor A. Dean
{"title":"An indirect hot form and Quench (HFQ) for manufacturing components of aluminum alloy sheets and comparison with direct HFQ","authors":"Ruiqiang Zhang,&nbsp;Wei Wang,&nbsp;Jianguo Lin,&nbsp;Trevor A. Dean","doi":"10.1016/j.ijmachtools.2023.104073","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104073","url":null,"abstract":"<div><p>The process of Hot Form and Quench of aluminum alloys, called Direct HFQ®, has been developed and applied to manufacture high-strength panel components, in which aluminum alloy sheet is heated to solution heat treatment temperature, quickly transferred to cold press dies, simultaneously formed and quenched, and subsequently artificially aged. For Direct HFQ, however, forming occurs at high temperatures, which results in high workpiece/die friction and wear, and hence high tooling and maintenance costs. In the present study, a novel Indirect HFQ for aluminum alloys has been proposed, in which alloy sheet in the O temper is formed at room temperature, then heated to solution heat treatment temperature, and quickly transferred to cold press dies for shape calibration and quenching, followed by artificial aging. In order to compare Indirect HFQ with Direct HFQ, AA6082 sheet specimens have been deformed uniaxially using the two HFQ techniques to a given strain or fracture. Mechanical properties of the deformed specimens have been measured, and differences in mechanical properties after the two HFQ processes have been quantified. Their microstructures have also been characterized to explain those differences. In addition, both HFQ techniques have been applied to form a B-pillar sectional component. It has been found that grain growth occurs in alloy deformed uniaxially to a strain higher than or equal to 10% during Indirect HFQ process, and the degree of grain growth decreases with increasing deformation. The grain growth during Indirect HFQ leads to a lower yield strength (up to ∼8%) and tensile strength (up to ∼12%) than that of the alloy processed using Direct HFQ. In addition, the alloy has a lower ductility and formability during Indirect HFQ than Direct HFQ.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"192 ","pages":"Article 104073"},"PeriodicalIF":14.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49869398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partially melted powder in laser based directed energy deposition: Formation mechanism and its influence on microstructure 激光定向能沉积中部分熔化粉末的形成机理及其对微观结构的影响
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-18 DOI: 10.1016/j.ijmachtools.2023.104072
Wei Fan , Yijie Peng , Yang Qi , Hua Tan , Zhe Feng , Yongxia Wang , Fengying Zhang , Xin Lin
{"title":"Partially melted powder in laser based directed energy deposition: Formation mechanism and its influence on microstructure","authors":"Wei Fan ,&nbsp;Yijie Peng ,&nbsp;Yang Qi ,&nbsp;Hua Tan ,&nbsp;Zhe Feng ,&nbsp;Yongxia Wang ,&nbsp;Fengying Zhang ,&nbsp;Xin Lin","doi":"10.1016/j.ijmachtools.2023.104072","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104072","url":null,"abstract":"<div><p><span>The powder–melt pool interaction behavior is crucial in laser-based directed energy deposition (LDED). Partially melted particles, which are formed as a result of this interaction, significantly influence on the microstructure and mechanical performance of multi-material and metal-matrix composites fabricated via LDED. However, the presence of partially melted particles is a contentious issue that has been overlooked in single-material LDED studies. Furthermore, the investigation of partially melted particles is hindered by the difficulties in direct observation. To overcome this obstacle, this study was conducted using a single-bead Ti–6Al–4V printing experiment with a relatively high oxygen content to distinguish partially melted particles directly. The formation mechanism of the partially melted particles was revealed through experimental studies combined with numerical analysis using a self-established model. Additionally, the influence of partially melted particles on the grain structure of LDED–fabricated parts was investigated in a low–oxygen environment. The partially melted particles tend to survive close to the surface of the deposited layer. As the penetration depth increased, the particle size decreased and the aspect ratio increased. The formation of partially melted particles collectively depends on the laser power, scanning velocity, powder size and powder feed speed, differing from the common conclusion that an insufficient input energy results in poor powder melting behavior. Furthermore, a Ti–6Al–4V sample with high–fraction equiaxed grains was fabricated using optimized processing conditions. The partially melted particles significantly affected the solidification behavior. In addition to the </span>heterogeneous nucleation<span> mechanism caused by the partially melted particles, a novel seed crystal mechanism was proposed to support the abnormal formation of equiaxed grains. This study highlights the importance of partially melted particles in LDED, and provides useful insights into in-situ microstructural control in LDED.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"192 ","pages":"Article 104072"},"PeriodicalIF":14.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49831302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigation of the grain deformation to orthogonal cutting process of the textured Alloy 718 fabricated by laser powder bed fusion 激光粉末床熔接织构718合金正交切削过程中晶粒变形的研究
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-01 DOI: 10.1016/j.ijmachtools.2023.104050
Lingshan Li , Hao Chen , Zhirong Liao , Yue Yang , Dragos Axinte
{"title":"Investigation of the grain deformation to orthogonal cutting process of the textured Alloy 718 fabricated by laser powder bed fusion","authors":"Lingshan Li ,&nbsp;Hao Chen ,&nbsp;Zhirong Liao ,&nbsp;Yue Yang ,&nbsp;Dragos Axinte","doi":"10.1016/j.ijmachtools.2023.104050","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104050","url":null,"abstract":"<div><p>In the laser powder bed fusion (LPBF), the grains grow in preferential directions depending on the scanning strategies, which results in layer-by-layer builds of particular crystallographic textures. The unique microstructure formed by LPBF results in anisotropic properties of the built structure at both macro and micro levels. To understand the grain deformation of the textured alloy fabricated by LPBF in the high-strain-rate shear process, Alloy 718 was used as an example in this work. Bulk samples with different metallurgical textures were deliberately fabricated by LPBF via three laser rotation angles, namely 0°, 67° and 90°, and then four thin slices obtained from bulks were subjected to “quasi-in-situ” grain deformation investigation through orthogonal cutting (a simple shear loading condition). The evolution of crystal orientations and morphologies, including size and shape, were traced before and after shear deformation. A full-field crystal plasticity simulation was used to quantify the stress status for grains obtained from EBSD data. This for the first time reveals the crystallographic level deformation history for hundreds of microns during a high strain rate shear removal deformation. Due to the carefully retained deformation history (i.e., typical bulges and slip bands) on the surface, a repeated deformation pattern was observed, attributing to the non-homogeneous deformation of typical build-directional blocks. The most active slip trace of deformed grain was calculated and verified based on the dominated slip bands within individual grains. The slip trace direction and intensity were quantified for different textured Alloy 718. Since the slipping-based deformation for an orientated grain is represented by its most active slip trace, a deformation tendency map is obtained by combining the shear direction, slip system and grain morphology. It reveals that grains in high texture intensity workpieces generally follow the macro shear-based deformation, while with the decrease in texture intensity, the plastic anisotropy is significant at the grain scale. Grains with similar orientations may also result in localised deformation anisotropy due to the different morphologies.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"190 ","pages":"Article 104050"},"PeriodicalIF":14.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49848256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
About review papers submitted to International Journal of Machine Tools and Manufacture (IJMTM) 关于提交给《国际机床与制造杂志》(IJMTM)的评论论文
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-01 DOI: 10.1016/j.ijmachtools.2023.104051
Dragos Axinte
{"title":"About review papers submitted to International Journal of Machine Tools and Manufacture (IJMTM)","authors":"Dragos Axinte","doi":"10.1016/j.ijmachtools.2023.104051","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104051","url":null,"abstract":"","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"190 ","pages":"Article 104051"},"PeriodicalIF":14.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49848253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the low-frequency chatter in robotic milling 机器人铣削中低频颤振的研究
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-01 DOI: 10.1016/j.ijmachtools.2023.104048
Shihao Xin , Xiaowei Tang , Jiawei Wu , Fangyu Peng , Rong Yan , Wei Yang
{"title":"Investigation of the low-frequency chatter in robotic milling","authors":"Shihao Xin ,&nbsp;Xiaowei Tang ,&nbsp;Jiawei Wu ,&nbsp;Fangyu Peng ,&nbsp;Rong Yan ,&nbsp;Wei Yang","doi":"10.1016/j.ijmachtools.2023.104048","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104048","url":null,"abstract":"<div><p>In robotic milling with large allowance process, low-frequency chatter (LFC) is an important factor observed in high-speed and low-speed milling, affecting the processing efficiency and quality. Previous research has used the regenerative chatter theory, ignoring modulated tool-workpiece engagement conditions, or mode coupling theory under the assumption of threading operations to explain the LFC mechanism and predict the stability boundary. However, these models overlook or inaccurately characterize the modulation effect, leading to inaccurate modeling of dynamic chip thickness changes during milling, making it difficult to understand the mechanism of LFC. Here, we propose an LFC stability model that considers modulated tool-workpiece engagement conditions and the mode coupling effect of the robotic structure for robotic milling. This approach allows us to reveal the mechanism of LFC and identify the characteristic signal of low-frequency vibration, which is the sideband frequency signal. Initially, the evolution of LFC is analyzed, and its characteristics are summarized. Further, a surface renewal (SR) model is proposed to accurately calculate the dynamic cutting force caused by modulated tool-workpiece engagement conditions in LFC. Furthermore, the LFC stability model, considering the modulated tool-workpiece engagement conditions and mode coupling effect, is established based on impulse response function (IRF) method. Finally, we verify the accuracy of our model through milling experiments and compare it with that of the classical stability prediction model. Our results show that LFC is highly dependent on speed, and our stability model can effectively predict the stability boundary of LFC in robotic milling with large allowance process.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"190 ","pages":"Article 104048"},"PeriodicalIF":14.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49848254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing 激光粉末床熔融增材制造过程中Ti6Al4V粉末氧化影响的原位监测
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-01 DOI: 10.1016/j.ijmachtools.2023.104049
Gowtham Soundarapandiyan , Chu Lun Alex Leung , Carol Johnston , Bo Chen , Raja H.U. Khan , Phil McNutt , Alisha Bhatt , Robert C. Atwood , Peter D. Lee , Michael E. Fitzpatrick
{"title":"In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing","authors":"Gowtham Soundarapandiyan ,&nbsp;Chu Lun Alex Leung ,&nbsp;Carol Johnston ,&nbsp;Bo Chen ,&nbsp;Raja H.U. Khan ,&nbsp;Phil McNutt ,&nbsp;Alisha Bhatt ,&nbsp;Robert C. Atwood ,&nbsp;Peter D. Lee ,&nbsp;Michael E. Fitzpatrick","doi":"10.1016/j.ijmachtools.2023.104049","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104049","url":null,"abstract":"<div><p>Making laser powder bed fusion (L-PBF) additive manufacturing process sustainable requires effective powder recycling. Recycling of Ti6Al4V powder in L-PBF can lead to powder oxidation, however, such impact on laser-matter interactions, process, and defect dynamics during L-PBF are not well understood. This study reveals and quantifies the effects of processing Ti6Al4V powders with low (0.12 wt%) and high (0.40 wt%) oxygen content during multilayer thin-wall L-PBF using <em>in situ</em> high speed synchrotron X-ray imaging. Our results reveal that high oxygen content Ti6Al4V powder can reduce melt ejections, surface roughness, and defect population in the built parts. With increasing oxygen content in the part, there is an increase in microhardness due to solid solution strengthening and no significant change in the microstructure is evident.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"190 ","pages":"Article 104049"},"PeriodicalIF":14.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49848255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications 铝合金和铝基复合材料增材制造的最新进展:微观结构、性能和应用
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-08-01 DOI: 10.1016/j.ijmachtools.2023.104047
Zhiguang Zhu , Zhiheng Hu , Hang Li Seet , Tingting Liu , Wenhe Liao , Upadrasta Ramamurty , Sharon Mui Ling Nai
{"title":"Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications","authors":"Zhiguang Zhu ,&nbsp;Zhiheng Hu ,&nbsp;Hang Li Seet ,&nbsp;Tingting Liu ,&nbsp;Wenhe Liao ,&nbsp;Upadrasta Ramamurty ,&nbsp;Sharon Mui Ling Nai","doi":"10.1016/j.ijmachtools.2023.104047","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2023.104047","url":null,"abstract":"<div><p>Whilst the adoption of additive manufacturing (AM) of aluminum alloys is relatively slower compared with that of steels and titanium alloys, it has undergone a flourishing trend in the past 15 years. Significant progress, such as the development of novel processes, novel alloys, novel heat treatment profiles, and applications, has been made through the combined efforts from academic and industry fields. This state-of-the-art review presents a detailed overview of the process technology, microstructure, and properties of different aluminum alloys and aluminum matrix composites fabricated using various additive manufacturing technologies, including laser powder bed fusion, electron beam powder bed fusion, laser powder direct energy deposition, wire arc additive manufacturing, binder jetting, and additive friction stir deposition. The pros and cons of each technology in fabricating aluminum alloys are evaluated. As the dominant additive manufacturing technology for aluminum alloys, an emphasis is put on the laser powder bed fusion technology by reviewing the effect of various factors, such as post-heat treatment, powder feedstock, oxidation, and element evaporation, on the microstructure and properties. We close the review with the outlook listing the remaining challenges associated with the additive manufacturing of aluminum alloys.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"190 ","pages":"Article 104047"},"PeriodicalIF":14.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49848257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信