International Journal of Chemical Reactor Engineering最新文献

筛选
英文 中文
Operation enhancement of the H2 shaft furnace: a numerical study on the impact of N2 mixing in feed gas H2 竖炉的运行改进:关于原料气中 N2 混合影响的数值研究
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-15 DOI: 10.1515/ijcre-2024-0043
Shan Yu, Lei Shao, Zongshu Zou
{"title":"Operation enhancement of the H2 shaft furnace: a numerical study on the impact of N2 mixing in feed gas","authors":"Shan Yu, Lei Shao, Zongshu Zou","doi":"10.1515/ijcre-2024-0043","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0043","url":null,"abstract":"\u0000 Focusing on improving the performance of the hydrogen (H2)-based direct reduction shaft furnace (HSF), the current work was undertaken to evaluate the potential benefits of an operation featuring nitrogen (N2) mixing in feed gas using a computational fluid dynamics (CFD) model that describes the in-furnace gas-solid countercurrent reactive flows. A set of simulation cases was carried out under different N2 flow rates and top pressures. Variation in the latter operating parameter was conducted with the intent to mitigate the issue of H2 dilution caused by N2 mixing. The results showed that the in-furnace thermochemical state deteriorates if the N2 flow rate is inadequate. The state is gradually improved by increasing the N2 flow rate as more sensible heat is delivered into the process, thereby resulting in better degrees of solid reduction and H2 utilization. An increase in the top pressure gives rise to higher gas density that enhances the driving force and thus facilitates the reduction reaction. A higher solid reduction degree is consequently achieved by elevating the top pressure. When the top pressure exceeds 5.0 atm, however, the increase in solid reduction degree becomes marginal, while the energy required for compressing the feed gas continues to rise linearly.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of bromothymol blue and methyl green from aqueous media by Photo-Fenton: comparison between UV-lamp and sun irradiation 光-芬顿法降解水介质中的溴百里酚蓝和甲基绿:紫外灯和太阳照射的比较
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-12 DOI: 10.1515/ijcre-2024-0057
Wafa Atba, Abdelaziz Smara, M. Chérifi, François Lapicque, S. Hazourli
{"title":"Degradation of bromothymol blue and methyl green from aqueous media by Photo-Fenton: comparison between UV-lamp and sun irradiation","authors":"Wafa Atba, Abdelaziz Smara, M. Chérifi, François Lapicque, S. Hazourli","doi":"10.1515/ijcre-2024-0057","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0057","url":null,"abstract":"\u0000 The degradation of two textile dye molecules was studied using photochemical processes, both in the absence and presence of light. Various methods were employed, including photolysis/UV, combined H2O2/UV photolysis, Fe2+/UV treatment, Photo-Fenton/UV at 350 nm and Photo-Fenton with solar irradiation. The decolorization efficiency of dyes in aqueous solution was evaluated for two specific dyes: Bromothymol Blue (BTB) and Methyl Green (MG). These experiments were carried out in batch mode. The results demonstrated a synergy between light irradiation and the presence of Fenton’s reagents, such as hydrogen peroxide and divalent iron. In addition, it was demonstrated that direct solar irradiation can be used without specific devices to achieve high efficiency at low cost. In the first part, we checked the impact of the various operating parameters. Reaction efficiencies were compared for the same system in the dark and under the assistance of an artificial or solar light source. In the second part, we studied the parameters of the Photo-Fenton process, such as the initial pH of the solution, the initial concentrations of oxidant, iron catalyst, and dye under irradiation from either light source. Whereas the mere photolysis without Fenton’s reagents allowed decolorization yields below 26 %, addition of the oxidant (H2O2) or the catalyst (Fe(II) species amplified the treatment efficiency. However, the presence of both H2O2 and Fe(II) under light irradiation was shown synergetic with yields ranging from 72 to 85 % depending on the dye worked and the light source: because of its broader spectrum in the UV domain, solar irradiation led to the highest decolorization yields. The above results were obtained for well-defined proportions of dye and reagents: for a 20 mg/l dye solution, Fe(II) catalyst concentration equal to 10−3 M, peroxide concentration of 5.10−2 M and a pH of 3. These conditions allowed optimal production of OH· radicals, allowing high efficiency in systems using solar irradiation.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on NO and N2O emissions characteristics in deep peak regulation circulating fluidized bed boilers 深度调峰循环流化床锅炉 NO 和 N2O 排放特性研究
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-12 DOI: 10.1515/ijcre-2024-0103
Fengxia An, Yiwen Zhang, Lingyan Le, Ying Yu, Fanhui Shen, Kang Yang, Haitao Hu, Fan Ye, Hui Wang
{"title":"Investigation on NO and N2O emissions characteristics in deep peak regulation circulating fluidized bed boilers","authors":"Fengxia An, Yiwen Zhang, Lingyan Le, Ying Yu, Fanhui Shen, Kang Yang, Haitao Hu, Fan Ye, Hui Wang","doi":"10.1515/ijcre-2024-0103","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0103","url":null,"abstract":"\u0000 To adapt to the increasing proportion of new energy power generation capacity, coal power must transition from its traditional role as the primary power source to serving as a fundamental backup and system regulation energy source. The circulating fluidized bed technology is known for its wide range of load regulation capabilities; however, emissions of pollutants during load regulation can exhibit significant variability. This study utilized Aspen Plus software to develop a circulating fluidized bed combustion model based on a gas-solid fluid dynamics model, an equivalent coal pyrolysis model, and a multi-phase macroscopic combustion reaction dynamics model of pyrolysis products. This model was used to predict both the temperature distribution within the furnace chamber and the distribution of pollutant concentrations. Predictions of pollutant emissions from 100 % load to 30 % load of the circulating fluidized bed were explored under the original combustion condition and 5 % proportion of recirculated flue gas. Under the primary combustion condition, the emission concentration of NO\u0000 x\u0000 showed a decreasing and then increasing trend with decreasing load, while the concentration of nitrous oxide, in contrast to NO\u0000 x\u0000 , showed an increasing and then decreasing trend. The effect of recirculated flue gas on pollutant emissions was not significant at reduced loads. This study aims to provide technical support and theoretical guidance for the management of pollutant emissions from the deep peak regulation of actual circulating fluidized beds.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green hydrogen production in Uruguay: a techno-economic approach 乌拉圭的绿色氢气生产:技术经济方法
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-09 DOI: 10.1515/ijcre-2024-0066
Betiana Bouzas, E. Téliz, Verónica Díaz
{"title":"Green hydrogen production in Uruguay: a techno-economic approach","authors":"Betiana Bouzas, E. Téliz, Verónica Díaz","doi":"10.1515/ijcre-2024-0066","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0066","url":null,"abstract":"\u0000 In 2015, the participants of the Paris Agreement collectively acknowledged the urgent need for immediate actions to decarbonize their national economies, with the aim of mitigating the adverse impacts of climate change. There is a call for policymakers to step up efforts to significantly reduce greenhouse gas (GHG) emissions in all economic sectors, with a focus on prioritizing options that can deliver substantial emission cuts. Some industry and transport subsectors present significant challenges in terms of technical and economic feasibility. Viable solutions for these sectors, known as “hard-to-abate” sectors, are limited. Green hydrogen has emerged as a promising alternative that is gaining increasing attention. It is poised to play a crucial role in transitioning towards a more sustainable future. There is a growing interest in green hydrogen among researchers, institutions, and nations, all committed to advancing its development, improving efficiency, and reducing costs. This paper explores the concept of green hydrogen, particularly its production processes that rely on renewable energy sources in Uruguay. It demonstrates the significant potential for green hydrogen production, facilitating the transition from fossil fuels to clean energy and promoting environmental sustainability through the widely accepted electrolysis process. Uruguay currently boasts a high percentage of renewable electricity generation (reaching 97 % in 2020). To support this further, there is a need to increase renewable energy capacity, which would impact the energy prices. The cost of energy accounts for more than 40 % of the levelized cost of hydrogen (LCOH) in all studied scenarios. Additionally, optimizing the costs associated with electrolysers, which can exceed 30 % of the LCOH in polymer electrolyte membrane (PEM) electrolysis, is crucial. This optimization is essential for positioning the country as a net exporter of green hydrogen. The range of LCOH values calculated in the different scenarios is between 2.11 USD/kg H2 and 4.12 USD/kg H2. According to updated specialized literature, achieving LCOH values under USD 1.4/kg H2 is essential for this goal.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the performance of Co/Al2O3–ZrO2 nanocatalysts developed through the thermal evaporation method in dry reforming of methane 探索通过热蒸发法开发的 Co/Al2O3-ZrO2 纳米催化剂在甲烷干法转化中的性能
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-09 DOI: 10.1515/ijcre-2024-0061
Mohamad jafar Moradi, G. Moradi
{"title":"Exploring the performance of Co/Al2O3–ZrO2 nanocatalysts developed through the thermal evaporation method in dry reforming of methane","authors":"Mohamad jafar Moradi, G. Moradi","doi":"10.1515/ijcre-2024-0061","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0061","url":null,"abstract":"Abstract This study aimed to investigate the performance of the thin layer nanostructures of Co/Al2O3–ZrO2 in the dry reforming of methane (DRM) in a microchannel reactor. The nanostructures were prepared via utilizing the thermal evaporation method. Reactor tests were carried out at various coating times of 2, 3, and 4 min and temperatures of 700, 750, and 800 °C with a feed flow rate of 10 ml/min and a 1:1:8 ratio of helium, carbon dioxide, and methane. Also, grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) were used to identify catalyst features. According to the obtained results, the highest percentage of conversion in all samples was observed at 800 °C. The results of the reactor tests also revealed that the activity of catalyst layers highly depends on coating time. The findings demonstrated that raising deposition time improves the distribution of particle size and catalyst loading. Considering the nanostructure of Co/Al2O3–ZrO2, the sample undergoing 4 min coating time yielded the highest amount of primary methane conversion (89.3 %), primary carbon dioxide conversion (92.4 %), and H2/CO molar ratio (0.91). The stability test of the catalyst layers for 28 h at the optimum condition (P = 1 atm, T = 800 °C, t = 4 min deposition time, CH4/CO2 = 1, and GHSV = 48,000 mL g−1 h−1) showed that the catalysts prepared by this method had a good stability.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of inlet water vapor mass fraction on flow characteristics in Laval nozzle 入口水蒸气质量分数对拉瓦尔喷嘴流动特性的影响
IF 1.2 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-07-02 DOI: 10.1515/ijcre-2024-0039
Lu Wang, Zhenhua Zhai, Jiansheng Chen, Guanghui Chen, Fei Gao, Jipeng Dong
{"title":"Effect of inlet water vapor mass fraction on flow characteristics in Laval nozzle","authors":"Lu Wang, Zhenhua Zhai, Jiansheng Chen, Guanghui Chen, Fei Gao, Jipeng Dong","doi":"10.1515/ijcre-2024-0039","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0039","url":null,"abstract":"Abstract The Laval nozzle is an important component of the supersonic cyclone to achieve the change of gas–liquid two-phase, and the condensation characteristics of the Laval nozzle have an important influence on the separation performance of the supersonic cyclone. In this work, the effect of inlet water vapor mass fraction on the condensation characteristics in the Laval nozzle was investigated using numerical simulation and experimental methods by establishing a three-dimensional numerical model of air-water vapor supersonic condensation flow. The flow field structures in the Laval nozzle under different inlet water vapor mass fractions were investigated, including Mach number, pressure, and temperature and the effects of the inlet water vapor mass fraction on the liquefaction characteristics in the Laval nozzle were investigated. In addition, the droplet distribution in the Laval nozzle were also tested by a particle image velocimetry (PIV) experimental system. The comparison of simulation and experimental results indicates that the numerical model established in this work can effectively describe the real flow situation in the Laval nozzle. The results show that the inlet water vapor mass fraction has a little effect on the flow field structure in the Laval nozzle, and has the significant impact on the water vapor condensation characteristics. With increasing the inlet steam mass fraction from 5 % to 12.5 %, the nucleation rate, droplet number, and separation efficiency in the Laval nozzle increase to 4.05 × 1021 kg−1 s−1, 3.67 × 1014 kg−1, and 79.4 %, respectively, and when further increasing the inlet steam mass fraction to 15 %, these parameters decrease.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFD-PBM simulation of power law fluid in a bubble column reactor 气泡塔反应器中幂律流体的 CFD-PBM 模拟
IF 1.6 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-06-17 DOI: 10.1515/ijcre-2024-0010
Mengqiang Duan, Shao-Bai Li, Manju L. Bhusal, Wei Zhang, Yuhuan Ding
{"title":"CFD-PBM simulation of power law fluid in a bubble column reactor","authors":"Mengqiang Duan, Shao-Bai Li, Manju L. Bhusal, Wei Zhang, Yuhuan Ding","doi":"10.1515/ijcre-2024-0010","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0010","url":null,"abstract":"Abstract A computational fluid dynamics coupled population balance model (CFD-PBM) was used to numerically simulate the fluid dynamics of bubble swarms in a bubble column containing non-Newtonian fluids. The effects of superficial gas velocity (U g ), the consistency index (K), and the flow index (n) on bubble size distribution (BSD), gas holdup, and fluid dynamic viscosity in a bubble column were analyzed at both local and overall scales. As U g increases, the bubble breakup occurs excessively, the gas holdup increases, and the dynamic viscosity decreases. K and n were used to characterize the rheological properties of power law fluid. As K increases, fluid viscosity increases, bubble breakup rate decreases, gas holdup in the top zone is slightly lower than in the middle zone, and dynamic viscosity increases. Within the range of n from 0.45 to 1.07, when n is smallest, the relative frequency of bubbles smaller than the initial size is relatively large, and the overall and local gas holdup are the highest. When n = 1.07, the fluid exhibits shear-thickening properties, and the dynamic viscosity variations are significant.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segregation and mixing of binary mixtures of spherical particles in a bubbling fluidized bed 球形颗粒二元混合物在鼓泡流化床中的分离与混合
IF 1.6 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-05-20 DOI: 10.1515/ijcre-2024-0035
Shan Ren, Zhong Zheng, Hongsheng Chen
{"title":"Segregation and mixing of binary mixtures of spherical particles in a bubbling fluidized bed","authors":"Shan Ren, Zhong Zheng, Hongsheng Chen","doi":"10.1515/ijcre-2024-0035","DOIUrl":"https://doi.org/10.1515/ijcre-2024-0035","url":null,"abstract":"\u0000 This work reports a CFD-DEM study on the segregation and mixing of binary mixtures of particles in a bubbling fluidized bed. A simplified mixing index was applied to determine the instantaneous mixing state in the bed, with which the effects of superficial gas velocity and initial packing state on the fluidization behavior were further discussed. For the well-mixed initial conditions, the mixing index decreases with fluidization time until a dynamic equilibrium between segregation and mixing is achieved. In contrast, the mixing index first increases and then decreases with fluidization time for completely-segregated initial conditions. However, the final equilibrium between segregation and mixing will not be affected by initial packing states for a given superficial gas velocity. Moreover, the bubbling behavior shows a marked impact on segregation and mixing, i.e., mixing is enhanced during the formation and grow-up of bubbles, while segregation is strengthened during the eruption of bubbles. This makes it possible to improve the fluidization of binary mixtures of particles based on the bubbling behaviors in the fluidized bed.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal precipitation of hematite from the model solution of zinc hydrometallurgical extraction 锌水冶萃取模型溶液中赤铁矿的热液沉淀
IF 1.6 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-01-03 DOI: 10.1515/ijcre-2023-0073
Chunlin Li, Zhigan Deng, Fuxian Yang, Chang Wei, Xingbin Li, Minting Li
{"title":"Hydrothermal precipitation of hematite from the model solution of zinc hydrometallurgical extraction","authors":"Chunlin Li, Zhigan Deng, Fuxian Yang, Chang Wei, Xingbin Li, Minting Li","doi":"10.1515/ijcre-2023-0073","DOIUrl":"https://doi.org/10.1515/ijcre-2023-0073","url":null,"abstract":"Abstract The effect of temperature and silicon concentration on iron precipitation and morphology of hematite particles was discussed. The results showed that increase of initial silicon centration will lead to the decrease of iron removal efficiency, and the Fe content decreases and S content increases in hematite. Increasing temperature is beneficial to increase iron removal rate and Fe content in hematite, but increasing temperature can not decrease silicon content in hematite. The content of Si in precipitate is proportional to the concentration of silicon in solution. Silicon is adsorbed on the surface of hematite in the form of silicic acid. Hematite particle was agglomerated microsphere. Increasing concentration of silicon will increase the disorder degree of hematite crystallization. With the increase of silicon concentration, the agglomeration of hematite particle was more obvious, and the average particle size of hematite particles increased. At 175 °C, the morphology of iron precipitation particles are composed of flake particles and rhomboid massive particles, but when the temperature rises to 195 °C, the agglomeration phenomenon is obvious, small flake particles agglomerate into microspherical aggregates.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139122076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal precipitation of hematite from the model solution of zinc hydrometallurgical extraction 锌水冶萃取模型溶液中赤铁矿的热液沉淀
IF 1.6 4区 工程技术
International Journal of Chemical Reactor Engineering Pub Date : 2024-01-03 DOI: 10.1515/ijcre-2023-0073
Chunlin Li, Zhigan Deng, Fuxian Yang, Chang Wei, Xingbin Li, Minting Li
{"title":"Hydrothermal precipitation of hematite from the model solution of zinc hydrometallurgical extraction","authors":"Chunlin Li, Zhigan Deng, Fuxian Yang, Chang Wei, Xingbin Li, Minting Li","doi":"10.1515/ijcre-2023-0073","DOIUrl":"https://doi.org/10.1515/ijcre-2023-0073","url":null,"abstract":"Abstract The effect of temperature and silicon concentration on iron precipitation and morphology of hematite particles was discussed. The results showed that increase of initial silicon centration will lead to the decrease of iron removal efficiency, and the Fe content decreases and S content increases in hematite. Increasing temperature is beneficial to increase iron removal rate and Fe content in hematite, but increasing temperature can not decrease silicon content in hematite. The content of Si in precipitate is proportional to the concentration of silicon in solution. Silicon is adsorbed on the surface of hematite in the form of silicic acid. Hematite particle was agglomerated microsphere. Increasing concentration of silicon will increase the disorder degree of hematite crystallization. With the increase of silicon concentration, the agglomeration of hematite particle was more obvious, and the average particle size of hematite particles increased. At 175 °C, the morphology of iron precipitation particles are composed of flake particles and rhomboid massive particles, but when the temperature rises to 195 °C, the agglomeration phenomenon is obvious, small flake particles agglomerate into microspherical aggregates.","PeriodicalId":13934,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信