S. V. Gurupranes, L. Natrayan, S. Kaliappan, Praveen Bhai Patel, S. Sekar, P. Jayaraman, C. K. Arvinda Pandian, E. Esakkiraj
{"title":"Investigation of Physicochemical Properties and Characterization of Leaf Stalk Fibres Extracted from the Caribbean Royal Palm Tree","authors":"S. V. Gurupranes, L. Natrayan, S. Kaliappan, Praveen Bhai Patel, S. Sekar, P. Jayaraman, C. K. Arvinda Pandian, E. Esakkiraj","doi":"10.1155/2022/7438411","DOIUrl":"https://doi.org/10.1155/2022/7438411","url":null,"abstract":"Synthetic fibres (SF) are replaced by natural fibres (NF) and are utilized as polymer reinforcement owing to their eco-friendliness. The composite has been introduced in the current development by employing NF as reinforcement and stuffing in the polymer matrix (PM). The advantages of using natural resources are being eco-friendly, having plentiful natural availability, higher strength, lower cost, and a simple extrication process. When heated to a specific temperature, certain synthetic products create noxious materials. Therefore, replacing these synthetic substances with natural substances has greater advantages for the environment. In this study, a novel NF extricated from the Caribbean royal palm (CRP) along with its features is determined to replace the harmful SF effectively. The CRP’s leaf stalks, termed CRP leaf stalk fibres (CRPLSFs), are extricated and categorized by (i) thermogravimetric analysis (TGA), (ii) scanning electron microscopy (SEM), (iii) Fourier-transform infrared (FT-IR) spectroscopy, (iv) physical-chemical analysis, (v) X-ray diffraction (XRD), and (vi) tensile test (TT). The physical-chemical characteristics of CRPLSFs, cellulose content (CC), tensile strength (TS), density, and hemicelluloses correlate with other NF characteristics. The CRPLSFs’ chemical components include hemicelluloses (14.52%), lignin (9.15%), and cellulose (61.67%). The TGA shows that the CRPLSFs are thermally stabilized up to 326°C. The XRD proved that the CRPLSFs are enriched with a cellulose fraction comprising a crystallinity index (CI) of 30.27%. The outcomes recommended that the biodegradable coconut peduncle leaf stalk fibres (CPLSF) could be exploited as possible reinforcement in the PM composite structure and can be engaged in making composites.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45782498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. M. Fonseca-Pérez, O. Del-Mazo-Alvarado, A. Meza-de-Luna, A. Bonilla-Petriciolet, Z. Geem
{"title":"An Overview of the Application of Harmony Search for Chemical Engineering Optimization","authors":"R. M. Fonseca-Pérez, O. Del-Mazo-Alvarado, A. Meza-de-Luna, A. Bonilla-Petriciolet, Z. Geem","doi":"10.1155/2022/1928343","DOIUrl":"https://doi.org/10.1155/2022/1928343","url":null,"abstract":"Harmony search algorithm and its variants have been used in several applications in medicine, telecommunications, computer science, and engineering. This article reviews the global and multi-objective optimization for chemical engineering using harmony search. The main features of the HS method and several of its popular variants and hybrid versions including their relevant algorithm characteristics are described and discussed. A variety of global and multi-objective optimization problems from chemical engineering and their resolution using HS-based methods are also included. These problems involve thermodynamic calculations (phase stability analysis, phase equilibrium calculations, parameter estimation, and azeotrope calculation), heat exchanger design, distillation simulation, life cycle analysis, and water distribution systems, among others. Remarks on future developments of HS and its related algorithms for global and multi-objective optimization in chemical engineering are also provided in this review. HS is a reliable and promising stochastic optimizer to resolve challenging global and multi-objective optimization problems for process systems engineering.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43430357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Dineshkumar, P. Jeyakumar, C. K. Arvinda Pandian, N. Rajmohan, P. Elumalai, N. Kamesh, Saboor Shaik, M. Sharifpur, N. Khalilpoor
{"title":"Assessment on Performance and Emission Characteristics of the CRDI Engine Fueled with Ethanol/Diesel Blends in Addition to EGR","authors":"C. Dineshkumar, P. Jeyakumar, C. K. Arvinda Pandian, N. Rajmohan, P. Elumalai, N. Kamesh, Saboor Shaik, M. Sharifpur, N. Khalilpoor","doi":"10.1155/2022/4413617","DOIUrl":"https://doi.org/10.1155/2022/4413617","url":null,"abstract":"In this research, the CRDI engine characteristics were analyzed with the aid of exhaust gas recirculation rate (EGR) adoption fueled with ethanol blends. The test fuels were the various blends with ethanol, such as (10% of ethanol + 90% of diesel) E10D90 (20% of ethanol + 80% of diesel), E20D80, and (30% of ethanol + 70% of diesel) E30D70. From the results, it was revealed that performance characteristics were reduced when using a higher concentration of the alcohols mixed with diesel fuel. The blend E30D70 showed that brake thermal efficiency (BTE) without EGR drops by 3.8%, increased by 9.14% of BSFC, a 9.25% decrease in oxides of nitrogen emissions, and slightly decreased CO and HC emissions compared to baseline diesel operation at 60% load condition. The blend E10D90 with 20% EGR shows the highest BTE of 8.87% when compared with base fuel, due to proper fuel mixture taking place in the inlet manifold. The results indicate that the engine runs smoothly, and E30D70 has chosen an optimum blend. A further experiment was performed using E30D70 with different rates of exhaust gas recirculation system. The addition of exhaust gas recirculation with E30D70 in the common rail diesel engine exhibits oxides of nitrogen emission, but in contrast, it was noticed to have inferior performance characteristics and drastically decreased HC and CO emissions. The hydrocarbon emission decreased E10D90, E20D80, and E30D70 at 60% load condition by 21.42%, 37.38%, and 48.76%, respectively. The blends E10D90, E20D80, and E30D70 decreased carbon dioxide by 7.9%, 30.08%, and 31.98%, respectively. The maximum reduction of NOx emission was observed at about 51.06% at an EGR rate of 20% with E30D70.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44576501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial Differentiation of Ecological Stoichiometry of Nitrogen and Phosphorus in Mollic Epipedon of China","authors":"Huishi Du","doi":"10.1155/2022/9200438","DOIUrl":"https://doi.org/10.1155/2022/9200438","url":null,"abstract":"Nitrogen (N) and phosphorus (P) are essential elements for crop growth. The study on the spatial differentiation characteristics of soil N and P can provide a theoretical basis for regional fertilization as well as prevention and control of agricultural surface pollution. Taking the typical mollic epipedon area in Northeast China as study area, using the geostatistical model and 3S technology (Remote Sensing, RS; Geography information systems, GIS; and Global positioning systems, GPS), the spatial variation and influencing factors of N and P ecological stoichiometry in the surface soil (0-20 cm) were studied with 1,057 samples by five-point soil sampling method. The outcomes of the study showed that the average total nitrogen (TN), total phosphorus (TP), and N/P ratio were 1.88 g/kg, 0.276 g/kg, and 6.81, respectively. The degree of spatial variation is moderate, and structural factors such as topography and soil parent material are the main factors affecting the spatial variation of soil TN, TP content, and N/P ratio. Vegetation primarily affects the soil TN, TP contents, and N/P specific spatial variation. Soil TN and TP contents showed a downward trend from the northeast to the southwest region of the study. Different approaches of balanced fertilization, soil and water conservation, and reasonable spatial allocation are beneficial to improving the balance of soil N and P in the typical mollic epipedon area of Northeast China.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43693264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ratnam, Manikkampatti Palanisamy Murugesan, Srikanth Komarabathina, S. Samraj, M. Abdulkadir, Muktar Abdu Kalifa
{"title":"Methylene Blue Adsorption BY UV-Treated Graphene Oxide Nanoparticles (UV/n-GO): Modeling and Optimization Using Response Surface Methodology and Artificial Neural Networks","authors":"M. Ratnam, Manikkampatti Palanisamy Murugesan, Srikanth Komarabathina, S. Samraj, M. Abdulkadir, Muktar Abdu Kalifa","doi":"10.1155/2022/5759394","DOIUrl":"https://doi.org/10.1155/2022/5759394","url":null,"abstract":"To mitigate the negative effects of pollution produced by the growing levels of pollutants in the environment, research and development of novel and more effective materials for the treatment of pollutants originating from a variety of industrial sources should be prioritized. In this research, a UV-irradiated nano-graphene oxide (UV/n-GO) was developed and studied for methylene blue (MB) adsorption. Furthermore, the batch adsorption studies were modelled using response surface modelling (RSM) and artificial neural networks (ANNs). Investigations employing FTIR, XRD, and SEM were carried out to characterize the adsorbent. The best MB removal of 95.81% was obtained at a pH of 6, a dose of 0.4 g/L, an MB concentration of 25 mg/L, and a period of 40 min. This was accomplished with a desirability score of 0.853. A three-layer backpropagation network with an ideal structure of 4-4-1 was used to create an ANN model. The R2 and MSE values determined by comparing the modelled data with the experimental data were 0.9572 and 0.00012, respectively. The % MB removal predicted by ANN was 94.76%. The kinetics of adsorption corresponded well with the pseudo-second-order model (R2 > 0.97). According to correlation coefficients, the order of adsorption isotherm models is Redlich–Peterson > Temkin > Langmuir > Freundlich. Thermodynamic investigations show that MB adsorption was both spontaneous and endothermic.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43761450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Souad Djellali, A. Touati, A. Semmeq, M. Kebaili, M. Badawi, A. Bonilla-Petriciolet
{"title":"Unravelling the Methylene Blue Adsorption Mechanism on Doped and Nondoped Polyaniline: A Combined Molecular Modeling and Experimental Investigation","authors":"Souad Djellali, A. Touati, A. Semmeq, M. Kebaili, M. Badawi, A. Bonilla-Petriciolet","doi":"10.1155/2022/3181963","DOIUrl":"https://doi.org/10.1155/2022/3181963","url":null,"abstract":"A multiscale investigation including computational chemistry calculations and experimental studies was performed to elucidate and understand the methylene blue (MB) adsorption on polyaniline (PANI) from an aqueous solution. Static DFT and DFT-based ab initio molecular dynamics were used to characterize the intermolecular interactions of this dye molecule with nondoped and doped PANI. Experimental adsorption studies at different operating conditions were performed to complement the mechanism analysis of this adsorption system. Infrared spectroscopy studies and ab initio calculations showed the important role of π-π stacking and van der Waals interactions for the dye adsorption on PANI. Experimental results of MB adsorption on the PANI surface indicated that alkaline conditions were more favorable than acidic conditions where the MB adsorption capacity ranged from 9.91 mg/g at pH 1.8 to 23.16 mg/g at pH 10.9. Equilibrium adsorption studies with nondoped PANI revealed a fast removal of the dye molecules where the equilibrium adsorption was reached after 45 minutes. The kinetic parameters were calculated with the pseudo-second and pseudo-first order models, while the adsorption mechanism was analyzed using the intraparticle diffusion, Boyd, and Elovich models. Dye adsorption equilibrium was studied at pH 8 and 30 °C where Temkin, Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) isotherm models as well as a statistical physics monolayer model were employed in data analysis. The saturation dye adsorption capacity was 40.2 mg/g where an inclined adsorption orientation of dye molecules on the PANI surface could be expected with an adsorption energy of 14.0 kJ/mol. This interaction energy clearly indicated that only physical interactions were involved in the MB dye adsorption mechanism, which was also confirmed by the calculations with the D-R isotherm model. These theoretical and experimental results are important to understand the dye adsorption properties of conductive polymers and to consolidate their application in the synthesis of new adsorbents and composites for water treatment.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42024294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction Study of Oxygen and Iron-Sulfur Clusters Based on the Density Functional Theory","authors":"Jiancun Gao, H. Sui, Siyuan Wu, Renyou Zhang, Mengxin Zhang, Bolun Cui, Huilin Chu","doi":"10.1155/2022/9812188","DOIUrl":"https://doi.org/10.1155/2022/9812188","url":null,"abstract":"For the petrochemical industry, the spontaneous burning of iron sulfide compounds has been a major issue. In this study, XRD characterization of samples of iron sulfide compounds with spontaneous combustion tendency revealed that amorphous FeS was the primary constituent of the samples. A molecular simulation was used to build an amorphous FeS cluster model, and the density functional theory was used to examine the adsorption and reactivity characteristics of Fe4S4 clusters with O2. Different adsorption structures are generated by considering different adsorption sites and the electronic characteristics of each adsorption structure are evaluated. The results show that O2 prefers to adsorb around Fe atoms and has repulsion with S atoms, and the adsorption energy is maximum when two O atoms are co-adsorbed around Fe atoms, which is 198.13 kJ/mol. After adsorption charge, oxygen is in the superoxide state. The calculation of the reaction path divides the reaction process into different stages and considers different reaction routes. A thorough evaluation of the energy barriers and reaction energies of the two exothermic reactions leads to the conclusion that reaction path 1 is the optimal reaction path, and the reaction can release a total of 582.76 kJ/mol of heat. According to calculations, dimeric sulfur S2 must absorb a large part amount of energy in order to conduct the oxidation process. However, because S2 is present in the Fe4S4 reaction system, it may start the oxidation reaction by absorbing heat from the system and releasing 470.94 kJ/mol of heat. As a result, we conclude that this spontaneous exothermic reaction is a major cause of iron sulfide compounds spontaneous combustion. The thermal oxidation of the dimeric sulfur S2 generated in the reaction system releases heat that aggregates with the heat from the Fe4S4 cluster’s oxidation reaction system, eventually causing spontaneous combustion as a result of the heat’s continual buildup. In this study, we explore the reason for the extremely easy oxidation and spontaneous burning of iron sulfide compounds from a microscopic perspective to provide a theoretical foundation for the prevention and control of iron sulfide compound spontaneous combustion in the petrochemical sector.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45678523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naresh Kumar, S. Kaliappan, S. Socrates, L. Natrayan, Praveen Bhai Patel, Pravin P. Patil, S. Sekar, Wubishet Degife Mammo
{"title":"Investigation of Mechanical and Thermal Properties on Novel Wheat Straw and PAN Fibre Hybrid Green Composites","authors":"Naresh Kumar, S. Kaliappan, S. Socrates, L. Natrayan, Praveen Bhai Patel, Pravin P. Patil, S. Sekar, Wubishet Degife Mammo","doi":"10.1155/2022/3598397","DOIUrl":"https://doi.org/10.1155/2022/3598397","url":null,"abstract":"Grewia optiva wheat straw waste fibre and PAN fibre are combined in this study to create new composite materials. The novel specimens were created in the hydraulic hind moulding machine with varying percentages of mass of wheat straw fibres, PAN fibre (2–8%) in an equivalent ratio with other materials, and Kevlar fibre-based composites (2–4%). Natural fibre-reinforced clothing is getting increasingly fashionable these days; thus, this research is important. In several papers, natural fibre has been stated to have the potential to replace synthetic fibres. Natural fibre reinforcing has also proven to be quite effective as composites. It is currently used in a range of fields, including medical fields, aerospace, and the automobile industry, among others. Synthetic fibres are used. The usage of synthetic fibres such as asbestos and Kevlar has already been linked to mesothelioma, a kind of lung cancer. Many people have died as a result of Kevlar and asbestos. As a result, an effort to replace these materials is ongoing. Fabricated material’s mechanical, chemical, physical, tribological, and thermal properties were evaluated.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49084500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Characterization of Fe3O4-Bentonite Nanocomposite Adsorbent for Cr(VI) Removal from Water Solution","authors":"Ngusey Adisu, S. Balakrishnan, Haimanot Tibebe","doi":"10.1155/2022/4441718","DOIUrl":"https://doi.org/10.1155/2022/4441718","url":null,"abstract":"Bentonite-magnetite nanocomposite adsorbent (BMNC) was made and investigated for its adsorption removal of Cr(VI) from an aqueous solution. This adsorbent was prepared by the coprecipitation method from sodium bentonite (BNa) with iron chloride solution at controlled pH and under an inert atmosphere. These adsorbents were characterized by atomic absorption spectrophotometer (AAS), Brunauer–Emmett–Teller (BET), dynamic light scattering (DLS), scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses. Particle size of BMNC was in the range of 15 to 95 nm as per DLS. The intercalation of magnetite nanoparticles onto the bentonite clay increased its specific surface area from 142 to 177 m2/g as per BET analysis. Experimental design optimization results in 96.5% of Cr(VI) removal from the water solution at optimized adsorption parameters viz., adsorption time of 101 min, pH of 1.95, adsorbent dose of 1.12 g/L, and initial Cr(VI) concentration of 36.2 mg/L. The results of these studies demonstrate that the BMNC performs well. Moreover, the adsorption of Cr(VI) onto the BMNC was found to be the best fit with Langmuir isotherm (R2 = 0.9984) and a maximum adsorption capacity of 98 mg/g. The kinetics of the adsorption process was found to be a pseudo-second-order model (R2 = 0.9912). The BMNC also showed favourable reusability for adsorbate Cr(VI) ions removal from the water solution.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48737036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Abed, H. A. Lafta, Reza Alayi, H. Tamim, M. Sharifpur, N. Khalilpoor, Behnam Bagheri
{"title":"Utilization of Animal Solid Waste for Electricity Generation in the Northwest of Iran 3E Analysis for One-Year Simulation","authors":"A. Abed, H. A. Lafta, Reza Alayi, H. Tamim, M. Sharifpur, N. Khalilpoor, Behnam Bagheri","doi":"10.1155/2022/4228483","DOIUrl":"https://doi.org/10.1155/2022/4228483","url":null,"abstract":"Today, the use of renewable energy is increasing day by day. The most susceptible to renewable energy is biomass energy because it depends directly on the size of the population and does not have the problems of other renewable energies such as lack of access day and night and constant change throughout the year. For this reason, animal solid waste has been used in the research to supply electrical energy to the study area. In this regard, the amount of animal waste is considered as a source of biomass input energy. HOMER software was used to simulate the system under study. To better compare the competitiveness of this energy, photovoltaic systems and wind turbines have been used as different scenarios of electrical energy production in the study area. The results of scenario analysis showed that in all designed systems, the highest amount of energy production was in July and was related to the hottest season of the year. Among hybrid systems, the biomass system has a higher priority than other systems due to the minimum cost of energy production and total net present cost (NPC). The amount of exhaust gas from the biomass system reached 53.5 kg/yr and the biomass-wind and biomass-wind-solar systems reached 52.5 kg/yr and 52.2 kg/yr, respectively. The surplus generated electricity also increases from 2.91% to 6.65% from the biomass-wind system to the biomass-with-solar system.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49199116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}