International Journal of Chemical Kinetics最新文献

筛选
英文 中文
Rate Coefficients for the Cl Atom Gas-Phase Reaction With Permethylsiloxanes (PMS): L2, L3, L4, L5, D3, D4, D5, and D6
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-12-09 DOI: 10.1002/kin.21770
Daniel Van Hoomissen, Aparajeo Chattopadhyay, James B. Burkholder
{"title":"Rate Coefficients for the Cl Atom Gas-Phase Reaction With Permethylsiloxanes (PMS): L2, L3, L4, L5, D3, D4, D5, and D6","authors":"Daniel Van Hoomissen,&nbsp;Aparajeo Chattopadhyay,&nbsp;James B. Burkholder","doi":"10.1002/kin.21770","DOIUrl":"https://doi.org/10.1002/kin.21770","url":null,"abstract":"<p>Rate coefficients, <i>k</i>(T), for the gas-phase Cl atom reaction with hexamethyldisiloxane ((CH<sub>3</sub>)<sub>3</sub>SiOSi(CH<sub>3</sub>)<sub>3</sub>, L<sub>2</sub>), <i>k</i><sub>1</sub>; octamethyltrisiloxane ([(CH<sub>3</sub>)<sub>3</sub>SiO]<sub>2</sub>Si(CH<sub>3</sub>)<sub>2</sub>, L<sub>3</sub>), <i>k</i><sub>2</sub>; decamethyltetrasiloxane ((CH<sub>3</sub>)<sub>3</sub>SiO[Si(CH<sub>3</sub>)<sub>2</sub>O]<sub>2</sub>Si(CH<sub>3</sub>)<sub>3</sub>, L<sub>4</sub>, <i>k</i><sub>3</sub>; dodecamethylpentasiloxane ((CH<sub>3</sub>)<sub>3</sub>SiO[Si(CH<sub>3</sub>)<sub>2</sub>O]<sub>3</sub>Si(CH<sub>3</sub>)<sub>3</sub>, L<sub>5</sub>, <i>k</i><sub>4</sub>; hexamethylcyclotrisiloxane ([-Si(CH<sub>3</sub>)<sub>2</sub>O-]<sub>3</sub>, D<sub>3</sub>), <i>k</i><sub>5</sub>; octamethylcyclotetrasiloxane ([-Si(CH<sub>3</sub>)<sub>2</sub>O-]<sub>4</sub>, D<sub>4</sub>), <i>k</i><sub>6</sub>; decamethylcyclopentasiloxane ([-Si(CH<sub>3</sub>)<sub>2</sub>O-]<sub>5</sub>, D<sub>5</sub>, <i>k</i><sub>7</sub>), and dodecamethylcyclohexasiloxane ([-Si(CH<sub>3</sub>)<sub>2</sub>O-]<sub>6</sub>, D<sub>6</sub>, <i>k</i><sub>8</sub>) were measured over a range of temperature (273–363 K) using a pulsed laser photolysis (PLP) – resonance fluorescence (RF) technique. The obtained <i>k</i>(296 K) and Arrhenius expressions with 2σ uncertainties including estimated systematic errors are (in units of 10<sup>−10</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>):\u0000\u0000 </p><p>The cyclic permethyl siloxanes (cyclic PMS) were found to be less reactive than the analogous linear permethyl siloxane (linear PMS) with an equal number of CH<sub>3</sub>- groups. Both linear and cyclic compounds show a linear relationship between the measured rate coefficient and the number of CH<sub>3</sub>- groups in the molecule. A structure–activity relationship (SAR) is presented that reproduces the experimental data to within ∼10% at all temperatures. For [Cl] ≈ 10<sup>4</sup> atom cm<sup>−3</sup>, an approximate free troposphere abundance, the PMS loss due to Cl atom reaction leads to relatively short estimated lifetimes of 7, 6, 5, 4, 20, 10, 7, and 5 days for L<sub>2</sub>, L<sub>3</sub>, L<sub>4</sub>, L<sub>5</sub>, D<sub>3</sub>, D<sub>4</sub>, D<sub>5</sub>, and D<sub>6</sub>, respectively. Therefore, the PMSs included in this study are classified as atmospherically very short-lived substances and Cl atom reaction represents a significant loss process.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 3","pages":"213-231"},"PeriodicalIF":1.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rate coefficients for the gas-phase reaction of OH radicals with the L4, L5, D5, and D6 permethylsiloxanes
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-11-20 DOI: 10.1002/kin.21769
François Bernard, James B. Burkholder
{"title":"Rate coefficients for the gas-phase reaction of OH radicals with the L4, L5, D5, and D6 permethylsiloxanes","authors":"François Bernard,&nbsp;James B. Burkholder","doi":"10.1002/kin.21769","DOIUrl":"https://doi.org/10.1002/kin.21769","url":null,"abstract":"<p>Rate coefficients, <i>k</i>(T), for the gas-phase OH radical reaction with decamethyltetrasiloxane ((CH<sub>3</sub>)<sub>3</sub>SiO[Si(CH<sub>3</sub>)<sub>2</sub>O]<sub>2</sub>Si(CH<sub>3</sub>)<sub>3</sub>, L<sub>4</sub>, <i>k</i><sub>1</sub>), dodecamethylpentasiloxane ((CH<sub>3</sub>)<sub>3</sub>SiO[Si(CH<sub>3</sub>)<sub>2</sub>O]<sub>3</sub>Si(CH<sub>3</sub>)<sub>3</sub>, L<sub>5</sub>, <i>k</i><sub>2</sub>), and decamethylcyclopentasiloxane ([–Si(CH<sub>3</sub>)<sub>2</sub>O–]<sub>5</sub>, D<sub>5</sub>, <i>k</i><sub>3</sub>), and dodecamethylcyclohexasiloxane ([–Si(CH<sub>3</sub>)<sub>2</sub>O–]<sub>6</sub>, D<sub>6</sub>, <i>k</i><sub>4</sub>) were measured using a pulsed laser photolysis—laser induced fluorescence absolute method over the temperature range 270–370 K. The obtained room temperature rate coefficients, with quoted 2σ absolute uncertainties, and fitted temperature dependence are (cm<sup>−3</sup> molecule<sup>−1</sup> s<sup>−1</sup>):\u0000\u0000 </p><p>The 2σ absolute rate coefficient uncertainty, for all compounds included in this study, is conservatively estimated to be ∼10% over the entire temperature range. The cyclic permethylsiloxanes were found to be less reactive than the analogous linear compound, while both linear and cyclic compounds show increasing reactivity with increasing number of CH<sub>3</sub>- groups. A structure activity relationship (SAR) parameterization for the permethylsiloxanes is presented. The estimated atmospheric lifetimes due to OH reaction for L<sub>4</sub>, L<sub>5</sub>, D<sub>5</sub>, and D<sub>6</sub> are 5.2, 4.4, 6.8, and 5.2 days, respectively.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 3","pages":"199-212"},"PeriodicalIF":1.5,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic study on the hydrogen abstraction reactions from oxygenated compounds by H and HO2
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-11-04 DOI: 10.1002/kin.21761
Hiroki Oppata, Daisuke Shimokuri, Akira Miyoshi
{"title":"Systematic study on the hydrogen abstraction reactions from oxygenated compounds by H and HO2","authors":"Hiroki Oppata,&nbsp;Daisuke Shimokuri,&nbsp;Akira Miyoshi","doi":"10.1002/kin.21761","DOIUrl":"https://doi.org/10.1002/kin.21761","url":null,"abstract":"<p>To extend the rule-based approach for hydrogen abstraction reactions from oxygenated compounds, a systematic investigation was performed to examine the reactivity of gas-phase hydrogen abstraction reactions from alkyl groups (methyl and ethyl groups) bound to oxygen atoms in five types of oxygenated compounds (alcohols, ethers, formate esters, acetate esters, and carbonate esters) by H atoms and HO<sub>2</sub> radicals comprehensively considering rotational conformers. Quantum chemical calculations were conducted at the CBS-QB3 level for stationary points. Rate constants were determined employing conventional transition state theory (TST). For hydrogen abstraction reactions by H, the rotational conformer distribution partition function was employed to approximate partition functions, owing to the similarity in vibrational energy-level structures among conformers. In hydrogen abstraction reactions by HO<sub>2</sub>, the vibrational structures of transition-state (TS) conformers varied significantly due to the hydrogen bonding, leading to an inappropriate evaluation of rate constants when using the lowest-energy conformer as a representative. Therefore, the rate constants were calculated by the multi-structural TST. It was revealed that the differences in functional groups containing O atoms mainly affect the bond dissociation energies of the C–H bonds and the activation energies of hydrogen abstraction reactions only when the C atoms are adjacent to the O atoms. Additionally, it was found that hydrogen bonds formed in the TSs show minor effect on rate parameters for the overall rate constants, apart from the reduction of the pre-exponential factors for the H-abstraction reactions from the methylene position of ethyl groups. The comparison with the rate constants from previous studies showed reasonable results, indicating that the rate constants in this study, which thoroughly consider rotational conformers, can be the current best estimates.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 3","pages":"164-184"},"PeriodicalIF":1.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic studies on the sulfathiazole degradation by activated persulfate with ascorbic acid and cysteine
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-11-04 DOI: 10.1002/kin.21768
Zaheer Khan, Khloud Saeed Al-Thubaiti, Hayat M. Albishi
{"title":"Kinetic studies on the sulfathiazole degradation by activated persulfate with ascorbic acid and cysteine","authors":"Zaheer Khan,&nbsp;Khloud Saeed Al-Thubaiti,&nbsp;Hayat M. Albishi","doi":"10.1002/kin.21768","DOIUrl":"https://doi.org/10.1002/kin.21768","url":null,"abstract":"<p>In this study, ascorbic acid (AA) and cysteine (Cys) were used as homogeneous potassium persulfate (S<sub>2</sub>O<sub>8</sub><sup>2−</sup>) activators. The efficiency of the S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/AA and S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/Cys systems was investigated to generate sulfate radicals (SO<sub>4</sub><sup>−•</sup>) for the oxidation of sulfathiazole (STZ). The presence of AA and Cys displayed a promoting effect on the activation of S<sub>2</sub>O<sub>8</sub><sup>2−</sup>. The results indicated that the STZ/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> redox reaction followed pseudo-first order kinetics with respect to STZ concentrations. The oxidative degradation of STZ is accelerated by temperature, dose of S<sub>2</sub>O<sub>8</sub><sup>2−</sup>, AA, Cys, and pH with S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/AA and/or S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/Cys systems. The degradation rates of STZ followed the order S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/AA &gt; S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/Cys &gt; S<sub>2</sub>O<sub>8</sub><sup>2−</sup> under similar experimental conditions. The presence of SO<sub>4</sub><sup>−•</sup> and HO<sup>•</sup> were tested with two radical scavengers, tertiary butanol (TBA) and ethanol, in which HO<sup>•</sup> was mainly responsible for STZ degradation at higher pH. In summary, S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/AA and S<sub>2</sub>O<sub>8</sub><sup>2−</sup>/Cys systems might provide a potentially useful technique for remediation of water contaminants.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 3","pages":"185-198"},"PeriodicalIF":1.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic investigation on palladium-catalyzed carbonylation of allyl alcohol
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-10-24 DOI: 10.1002/kin.21767
Sunil S. Tonde, Kalpendra B. Rajurkar, Nitin S. Pagar
{"title":"Kinetic investigation on palladium-catalyzed carbonylation of allyl alcohol","authors":"Sunil S. Tonde,&nbsp;Kalpendra B. Rajurkar,&nbsp;Nitin S. Pagar","doi":"10.1002/kin.21767","DOIUrl":"https://doi.org/10.1002/kin.21767","url":null,"abstract":"<p>Palladium-catalyzed carbonylation of allyl alcohol to 3-butenoic acid has been investigated. A significant effect of halide promoters, <i>p</i>-tolylsulfonic acid (TsOH), water, solvents, and PPh<sub>3</sub> concentration activity and selectivity has been studied. Detailed kinetics of this reaction was investigated in a temperature range of 363–383 K. The influence of parameters such as stirring speed, allyl alcohol, catalyst, benzyltriethylammonium chloride (BTEAC), TsOH concentrations, and CO partial pressures on the activity and selectivity has been studied. An empirical rate equation was suggested and found to be fairly consistent with observed rate data. In addition, the activation energy and kinetic parameters were evaluated.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 3","pages":"153-163"},"PeriodicalIF":1.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the low-temperature oxidation chemistry of dipropyl carbonate
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-10-23 DOI: 10.1002/kin.21765
Lincheng Li, Chao Zhou, Guofeng Yang, Zhen Huang, Dong Han
{"title":"Unveiling the low-temperature oxidation chemistry of dipropyl carbonate","authors":"Lincheng Li,&nbsp;Chao Zhou,&nbsp;Guofeng Yang,&nbsp;Zhen Huang,&nbsp;Dong Han","doi":"10.1002/kin.21765","DOIUrl":"https://doi.org/10.1002/kin.21765","url":null,"abstract":"<p>Dialkyl carbonates (DACs) own an environmentally friendly synthesis route, making them potential candidates as alternative fuels. However, for DACs to be widely accepted as an alternative fuel, a comprehensive understanding of their combustion behavior is essential. Dipropyl carbonate (DPrC) represents a transition from short-chain to mid-chain carbonates, understanding its combustion behaviors holds significance in unraveling the combustion chemistry of carbonates. In this study, the oxidation of DPrC was investigated with the initial fuel mole fraction of 0.5% at three equivalence ratios of 0.5, 1.0, and 2.0 within a temperature range of 550–1100 K in a jet-stirred reactor for the first time. Gas chromatography was utilized for the quantitative detection of reactants, intermediates, and products. A detailed DPrC mechanism was first developed, and good agreements between measurements and simulations were obtained. A notable negative temperature coefficient (NTC) behavior was first observed in the oxidation of DACs. Such NTC phenomenon occurred at fuel-lean conditions in the temperature range of 620–660 K, while only a weak low-temperature consumption was observed at the stoichiometric condition. Kinetic modeling studies showed that this unique low-temperature chemistry of DPrC can be attributed to the differences in the RO<sub>2</sub> isomerization reactions between DPrC and short-chain DACs. The RO<sub>2</sub> isomerization via a six-member ring transition state could happen in DPrC oxidation but not in dimethyl carbonate and diethyl carbonate oxidation, due to the different fuel molecular structure. Therefore, the subsequent reaction pathways via QOOH → O<sub>2</sub>QOOH → HO<sub>2</sub>Q = O + OH → OQ = O + OH were promoted and two OH radicals were released in this process. Moreover, it is conceivable that mid or long-chain DACs could also exhibit an NTC phenomenon due to the increased potential for RO<sub>2</sub> isomerization via a six- or seven-member ring transition state, thereby increasing the likelihood of RO<sub>2</sub> isomerization occurrence.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"139-149"},"PeriodicalIF":1.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitory sensitivity in automatic chemical kinetic mechanism analysis 化学动力学机制自动分析中的短暂敏感性
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-10-21 DOI: 10.1002/kin.21766
Matthew S. Johnson, Charles J. McGill, William H. Green
{"title":"Transitory sensitivity in automatic chemical kinetic mechanism analysis","authors":"Matthew S. Johnson,&nbsp;Charles J. McGill,&nbsp;William H. Green","doi":"10.1002/kin.21766","DOIUrl":"https://doi.org/10.1002/kin.21766","url":null,"abstract":"<p>Detailed chemical kinetic mechanisms are necessary for resolving many important chemical processes. As the chemistry of smaller molecules has become better grounded and quantum chemistry calculations have become cheaper, kineticists have become interested in constructing progressively larger kinetic mechanisms to model increasingly complex chemical processes. These large kinetic mechanisms prove incredibly difficult to refine and time-consuming to interpret. Traditional sensitivity analysis on a large mechanism can range from inconvenient to practically impossible without special techniques to reduce the computational cost. We first present a new time-local sensitivity analysis we term transitory sensitivity analysis. Transitory sensitivity analysis is demonstrated in an example to accurately identify traditionally sensitive reactions at an 18,000x speed up over traditional sensitivities. By fusing transitory sensitivity analysis with more traditional time-local branching, pathway, and cluster analyses, we develop an algorithm for efficient automatic mechanism analysis. This automatic mechanism analysis at a time point is able to identify the reactions a target is most sensitive to using transitory sensitivity analysis and then propose hypotheses why the reaction might be sensitive using branching, pathway, and cluster analyses. We implement these algorithms within the reaction mechanism simulator (RMS) package, which enables us to report the automatic mechanism analysis results in highly readable text formats and in molecular flux diagrams.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"125-138"},"PeriodicalIF":1.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrokinetics of ammonium sulfite oxidation inhibited by sodium thiosulfate in wet ammonium flue gas desulfurization
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-10-18 DOI: 10.1002/kin.21764
Jian Peng, Wen Yao, Peichao Lian
{"title":"Macrokinetics of ammonium sulfite oxidation inhibited by sodium thiosulfate in wet ammonium flue gas desulfurization","authors":"Jian Peng,&nbsp;Wen Yao,&nbsp;Peichao Lian","doi":"10.1002/kin.21764","DOIUrl":"https://doi.org/10.1002/kin.21764","url":null,"abstract":"<p>The oxidation of ammonium sulfite must be inhibited to improve the economy and cycle performance of the ammonia flue gas desulfurization process. A stirred bubbling reactor was used to investigate the macrokinetics of oxidation inhibition of ammonium sulfite by sodium thiosulfate in wet ammonia desulfurization. The effects of initial <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>SO</mi>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>−</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>${rm SO}^{2-}_{3}$</annotation>\u0000 </semantics></math> concentration, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> concentration, pH value, gas flow rate, and temperature on the oxidation rate were discussed. The results show that the apparent activation energy of the reaction is 37.3 kJ/mol. The macrokinetics equation of sodium thiosulfate inhibiting sulfite oxidation in the ammonia desulfurization process was established. Combined with the kinetic model, it is inferred that the rate of sodium thiosulfate inhibiting ammonium sulfite oxidation is controlled by the intrinsic chemical reaction. The results can provide a reference for the regeneration of ammonium sulfite in the wet ammonia desulfurization process.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"117-124"},"PeriodicalIF":1.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric chemistry of (Z)-CF2HCF=CHCl: Kinetics and products of reaction with Cl atoms and OH radicals
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-10-07 DOI: 10.1002/kin.21763
Mads Peter Sulbaek Andersen, Josefine Ellerup Borcher, Ole John Nielsen
{"title":"Atmospheric chemistry of (Z)-CF2HCF=CHCl: Kinetics and products of reaction with Cl atoms and OH radicals","authors":"Mads Peter Sulbaek Andersen,&nbsp;Josefine Ellerup Borcher,&nbsp;Ole John Nielsen","doi":"10.1002/kin.21763","DOIUrl":"https://doi.org/10.1002/kin.21763","url":null,"abstract":"<p>Long path length FTIR-smog chamber techniques were used to study the title reactions in 650 Torr of N<sub>2</sub>, oxygen, or air diluent at 296 ± 3 K. Values of <i>k</i>(Cl + (<i>Z</i>)-CF<sub>2</sub>HCF = CHCl)═(6.6 ± 0.7) × 10<sup>−11</sup> and <i>k</i>(OH + (<i>Z</i>)-CF<sub>2</sub>HCF═CHCl)═(4.1 ± 0.7) × 10<sup>−12</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> were measured. The IR spectrum of (<i>Z</i>)-CF<sub>2</sub>HCF═CHCl is reported. The atmospheric lifetime of (<i>Z</i>)-CF<sub>2</sub>HCF═CHCl is determined by the reaction with OH and is approximately 2.8 days. Reaction of (<i>Z</i>)-CF<sub>2</sub>HCF═CHCl with Cl atoms gives HC(O)Cl and CF<sub>2</sub>HC(O)F as major primary products. Under environmental conditions, the OH radical initiated oxidation gives CF<sub>2</sub>HC(O)F and HC(O)Cl in yields of (98 ± 8)% and (100 ± 4)%, respectively. Accounting for non-uniform horizontal and vertical mixing leads to a 100-year time-horizon global warming potential value for (<i>Z</i>)-CF<sub>2</sub>HCF═CHCl of essentially zero.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"108-116"},"PeriodicalIF":1.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21763","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species selection for automatic chemical kinetic mechanism generation
IF 1.5 4区 化学
International Journal of Chemical Kinetics Pub Date : 2024-09-24 DOI: 10.1002/kin.21762
Matthew S. Johnson, Hao-Wei Pang, Mengjie Liu, William H. Green
{"title":"Species selection for automatic chemical kinetic mechanism generation","authors":"Matthew S. Johnson,&nbsp;Hao-Wei Pang,&nbsp;Mengjie Liu,&nbsp;William H. Green","doi":"10.1002/kin.21762","DOIUrl":"https://doi.org/10.1002/kin.21762","url":null,"abstract":"<p>Many important chemical kinetic systems require detailed chemical kinetic models to resolve. These detailed kinetic models can involve thousands of species and hundreds of thousands of chemical reactions, making them difficult to construct by hand. Modern automatic mechanism generation algorithms can mostly be divided into two classes: rule and rate based. Rule-based generators choose species based on user defined constraints on species and reaction classes. Rate-based generators generate a much larger set of potentially important species and reactions and then choose which ones to add based on running simulations of species and reactions deemed important and calculating the flux to potentially important species. In principle, the latter is preferable, as it requires the user to make far fewer assumptions about what is important in the system. However, while the effectiveness of the rate-based approach has been demonstrated in a wide variety of systems, it has also been demonstrated to have difficulty picking up important low-flux chemistries. Here we present a discussion of the challenges associated with rate-based mechanism generation and new algorithms that are able to efficiently mitigate these challenges improving species selection during mechanism generation in a set of case studies.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"57 2","pages":"93-107"},"PeriodicalIF":1.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信