{"title":"Measuring performance","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781003175414-23","DOIUrl":"https://doi.org/10.1201/9781003175414-23","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130007627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expressions","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781003175414-18","DOIUrl":"https://doi.org/10.1201/9781003175414-18","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130244356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S3","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-16","DOIUrl":"https://doi.org/10.1201/9781351201315-16","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130369228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subsetting","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/b17487-5","DOIUrl":"https://doi.org/10.1201/b17487-5","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"402 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115315547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Function factories","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-12","DOIUrl":"https://doi.org/10.1201/9781351201315-12","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122303241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-24","DOIUrl":"https://doi.org/10.1201/9781351201315-24","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133677658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasiquotation","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-23","DOIUrl":"https://doi.org/10.1201/9781351201315-23","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123577061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Names and values","authors":"H. Wickham","doi":"10.1201/9781351201315-3","DOIUrl":"https://doi.org/10.1201/9781351201315-3","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130364857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"R6","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-17","DOIUrl":"https://doi.org/10.1201/9781351201315-17","url":null,"abstract":"","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121754793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functions","authors":"M. Grosser, H. Bumann, H. Wickham","doi":"10.1201/9781351201315-7","DOIUrl":"https://doi.org/10.1201/9781351201315-7","url":null,"abstract":"ОБ ОДНОМ ПРЕДЕЛЕ ДЛЯ ВЫПУКЛЫХ МОНОТОННЫХ ФУНКЦИЙ НА М [0, 1] Д. Г. Сургайлис Настоящая работа является по существу продолжением работы [1], хотя речь пойдет здесь о свойствах более общих функций. Пусть G (G0) означает множество всех монотонно возрастающих функций g=g (z), 0≤∕≤ 1, удовлетворяющих условию 0≤g≤l (соответственно 0<g<l), а М (7) (где 7⊂[0, 1] — замкнутый интервал или конечное множество) — множество всех вероятностных мер Бэра, носитель которых содержится в Z, с топологией слабой сходимости мер и отношением частичного упорядочения w1≤tm2<→ 4→∫g^w1≤ ∖ gdm2 для всех g∈G. Пусть! М=М ([0, 1]). Обозначим Ф класс монотонных и выпуклых функций на М, т.е. таких, что F (w1) ≤ F (m2) для ττz1≤w2 и (1) для всех m1, m2eM и 0≤α≤ 1. Заметим при этом, что классу Ф принадлежит цена Rli в обобщенной задаче о „двух типах оружия“ (см. [1]) (доказательство этого факта мало отличается от доказательств теорем 1 и 2 в [1]). Функцию F∈Φ будем называть линейной на М (7) (или просто на 7⊂ [0, 1]), ^сли в соотношении (1) выполняется знак равенства для mlt m2≡M (7), 0≤a≤ 1. Рассуждая аналогично доказательству предложения 3 (см. ниже), можно убе диться, что справедливо следующее предложение. Предложение 1. Пусть F линейна на I. Тогда F(m)= ( F(to)m(dt) для теМ (Г), где Г — мера, сосредоточенная на точке z∈[0, 1]. Определим теперь на банаховом пространстве ограниченных бэровских -функций F=F(m), теМ с нормой || F∣∣=sup ∣ F (т) | линейный оператор Γg, g∈G0 по формуле где Tg — отображение M→M по формуле","PeriodicalId":137018,"journal":{"name":"Advanced R Solutions","volume":"184 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124748873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}