Int. J. Appl. Earth Obs. Geoinformation最新文献

筛选
英文 中文
Validation of GOES-16 ABI and MSG SEVIRI active fire products GOES-16 ABI和MSG SEVIRI活性防火产品的验证
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-11-01 DOI: 10.1016/J.JAG.2019.101928
J. Hall, R. Zhang, W. Schroeder, Chengquan Huang, L. Giglio
{"title":"Validation of GOES-16 ABI and MSG SEVIRI active fire products","authors":"J. Hall, R. Zhang, W. Schroeder, Chengquan Huang, L. Giglio","doi":"10.1016/J.JAG.2019.101928","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.101928","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74072679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
Estimation of flow in various sizes of streams using the Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea 利用Sentinel-1合成孔径雷达(SAR)数据估算汉江流域不同大小河流的流量
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-11-01 DOI: 10.1016/J.JAG.2019.101930
Waqas Ahmad, Dongkyun Kim
{"title":"Estimation of flow in various sizes of streams using the Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea","authors":"Waqas Ahmad, Dongkyun Kim","doi":"10.1016/J.JAG.2019.101930","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.101930","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76931706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Synthetic aperture radar and optical satellite data for estimating the biomass of corn 玉米生物量估算的合成孔径雷达与光学卫星数据
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-08-16 DOI: 10.1016/J.JAG.2019.101933
M. Hosseini, H. Mcnairn, S. Mitchell, Laura Dingle Robertson, Andrew A. Davidson, Saeid Homayouni
{"title":"Synthetic aperture radar and optical satellite data for estimating the biomass of corn","authors":"M. Hosseini, H. Mcnairn, S. Mitchell, Laura Dingle Robertson, Andrew A. Davidson, Saeid Homayouni","doi":"10.1016/J.JAG.2019.101933","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.101933","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80428039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest 季节性干燥热带森林植物和叶面积指数的现实和简化模型
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-08-05 DOI: 10.31223/osf.io/kj2vc
R. Miranda, R. Nóbrega, M. Moura, S. Raghavan, J. Galvíncio
{"title":"Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest","authors":"R. Miranda, R. Nóbrega, M. Moura, S. Raghavan, J. Galvíncio","doi":"10.31223/osf.io/kj2vc","DOIUrl":"https://doi.org/10.31223/osf.io/kj2vc","url":null,"abstract":"Abstract Leaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic photon flux density (PPFD) from above and below the canopy during the periods of 2011–2012 and 2016–2018. Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the portion of PAI that is actually LAI ( L A I C ). L A I C can be calculated as follows: L A I C = 1 - W A I / P A I ). We subtracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE with a minimum of 0.41 m2 m−2 (PAI) and 0.40 m2 m−2 (LAI). The SAVI models showed values 20% and 32% (PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other physical processes and components, such as leaves etiolation and increasing protochlorophyll. The developed models used the near-infrared band, and they varied only in relation to the inclusion of the red, green, and blue bands. (iii) All previously published models and MODIS-LAI underperformed against our calibrated models. Our study was able to provide several PAI and LAI models that realistically represent the phenology of the Caatinga.","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88706626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model 基于Sentinel-2和RapidEye数据的云杉林分叶片叶绿素含量反演研究
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.03.003
R. Darvishzadeh, A. Skidmore, H. Abdullah, Elias Cherenet, A. Ali, Tiejun Wang, W. Nieuwenhuis, M. Heurich, A. Vrieling, B. O'Connor, M. Paganini
{"title":"Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model","authors":"R. Darvishzadeh, A. Skidmore, H. Abdullah, Elias Cherenet, A. Ali, Tiejun Wang, W. Nieuwenhuis, M. Heurich, A. Vrieling, B. O'Connor, M. Paganini","doi":"10.1016/J.JAG.2019.03.003","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.03.003","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91500658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
Hyperspectral band selection using the N-dimensional Spectral Solid Angle method for the improved discrimination of spectrally similar targets 采用n维光谱立体角法进行高光谱波段选择,提高了光谱相似目标的识别能力
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.03.002
Yaqian Long, B. Rivard, Derek M. Rogge, Minghua Tian
{"title":"Hyperspectral band selection using the N-dimensional Spectral Solid Angle method for the improved discrimination of spectrally similar targets","authors":"Yaqian Long, B. Rivard, Derek M. Rogge, Minghua Tian","doi":"10.1016/J.JAG.2019.03.002","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.03.002","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82642673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network 利用MODIS和物候之眼网络的观测资料评估高级Himawari成像仪的地表物候
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.02.011
D. Yan, Xiaoyang Zhang, S. Nagai, Yunyue Yu, T. Akitsu, K. Nasahara, R. Ide, T. Maeda
{"title":"Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network","authors":"D. Yan, Xiaoyang Zhang, S. Nagai, Yunyue Yu, T. Akitsu, K. Nasahara, R. Ide, T. Maeda","doi":"10.1016/J.JAG.2019.02.011","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.02.011","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87136254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Multistep block mapping on principal component uniformity repairs Landsat 7 defects 基于主成分均匀性的多步块映射修复Landsat 7缺陷
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.02.005
G. Mueller-Warrant
{"title":"Multistep block mapping on principal component uniformity repairs Landsat 7 defects","authors":"G. Mueller-Warrant","doi":"10.1016/J.JAG.2019.02.005","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.02.005","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82486622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A graph-based progressive morphological filtering (GPMF) method for generating canopy height models using ALS data 一种基于图的渐进式形态学滤波(GPMF)方法用于利用ALS数据生成冠层高度模型
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.03.008
Yuanshuo Hao, Zhen Zhen, Fengri Li, Yinghui Zhao
{"title":"A graph-based progressive morphological filtering (GPMF) method for generating canopy height models using ALS data","authors":"Yuanshuo Hao, Zhen Zhen, Fengri Li, Yinghui Zhao","doi":"10.1016/J.JAG.2019.03.008","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.03.008","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82905370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data 基于c波段偏振SAR数据的小麦和大豆植物面积指数和湿生物量联合估算
Int. J. Appl. Earth Obs. Geoinformation Pub Date : 2019-07-01 DOI: 10.1016/J.JAG.2019.02.007
D. Mandal, Vineet Kumar, H. Mcnairn, A. Bhattacharya, Y. S. Rao
{"title":"Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data","authors":"D. Mandal, Vineet Kumar, H. Mcnairn, A. Bhattacharya, Y. S. Rao","doi":"10.1016/J.JAG.2019.02.007","DOIUrl":"https://doi.org/10.1016/J.JAG.2019.02.007","url":null,"abstract":"","PeriodicalId":13664,"journal":{"name":"Int. J. Appl. Earth Obs. Geoinformation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88770744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信