{"title":"Distribution of sulfides and PGE minerals in the picritic and taxitic gabbro-dolerites of the Norilsk 1 intrusion","authors":"N. Tolstykh, J. García, G. Shvedov","doi":"10.3749/canmin.2100037","DOIUrl":"https://doi.org/10.3749/canmin.2100037","url":null,"abstract":"\u0000 Disseminated ores in the Norilsk 1 intrusion were studied to elucidate the typomorphic features of sulfides and noble metal mineralizations in picritic and taxitic (or lower olivine) gabbro-dolerites. The former are characterized by the development of a low-sulfur sulfide association (troilite, Fe-rich pentlandite, talnakhite, chalcocite, native copper) while the latter exhibits a high-sulfur association (monoclinic pyrrhotite, Ni-rich pentlandite, pyrite, heazlewoodite). The contact between these types of rocks is geochemically and mineralogically contrasting. The mineralogical and geochemical zoning directed from the roof to the base of each layer is expressed by an increase in the Cu content (and chalcopyrite) in ores, an increase in the concentration of Ni in pentlandite and S in pyrrhotite in line with a decrease of the crystallization temperature, and an increase in sulfur fugacity in the same direction. Zoning of Pd(Pt) mineralization in picritic and taxitic (olivine) gabbro-dolerites is uniform and characterized by the distribution of Pd-Sn compounds in the upper parts (together with Pd-Pb minerals in picritic rocks) and Pd-As compounds in the lower parts of the sections according to a drop in temperature. Such reverse zoning contradicts the typical mechanism of differentiation by fractional crystallization, and possibly suggests a fluid-magmatic nature. Mineralogical and geochemical features in platinum group element-Cu-Ni-bearing rocks are consistent with the idea that different stages of multi-pulse intrusions of mafic-ultramafic magmas with different compositions formed the picritic and taxitic gabbro-dolerites of the Norilsk region.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132681027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Oberthür, F. Melcher, S. Goldmann, Fabian Fröhlich
{"title":"High grade ores of the Onverwacht platinum pipe, eastern Bushveld, South Africa","authors":"T. Oberthür, F. Melcher, S. Goldmann, Fabian Fröhlich","doi":"10.3749/canmin.2100031","DOIUrl":"https://doi.org/10.3749/canmin.2100031","url":null,"abstract":"\u0000 The platiniferous dunite pipes are discordant orebodies in the Bushveld Complex. The Onverwacht pipe is a large body (>300 m in diameter) of magnesian dunite (Fo80–83) that crosscuts a sequence of cumulates in the Lower Critical Zone of the Bushveld Complex. In a pipe-in-pipe configuration, the main dunite pipe at Onverwacht hosts a carrot-shaped inner pipe of Fe-rich dunite pegmatite (Fo46–62) which comprises the platinum-bearing orebody. The latter was ca. 18 m in diameter and a mining depth of about 320 m was reached.\u0000 In the present work, a variety of ore samples were studied by whole-rock geochemistry, including analyses of platinum group elements, ore microscopy, and electron probe microanalysis.\u0000 Olivine of the ore zone displays considerable chemical variation (range 46–62 mol.% Fo) and may represent either a continuum, or different batches of magma, or vertical or horizontal zonation within the ore zone. Chromite is principally regarded to be a consanguineous component of the pipe magma that crystallized in situ and simultaneously with olivine. The Onverwacht mineralization is Pt-dominated (>95% of the platinum group elements) and the ore is virtually devoid of sulfides. Platinum-dominated platinum group minerals predominate, followed by Rh-, Pd-, and Ru-species. Pt-Fe alloys are most frequent, followed by Pt-Rh-Ru-arsenides and -sulfarsenides, platinum group element antimonides, and platinum group element sulfides.\u0000 Our hypothesis on the genesis of the Onverwacht pipe and its mineralization is as follows: After near-consolidation of the layered series of the Critical Zone, the magnesian dunite pipe of Onverwacht was formed by upward penetration of magmas that replaced the existing cumulates initially by infiltration, followed by the development of a central channel where large volumes of magma flowed through. Fractional crystallization of olivine within the deeper magma chamber and/or during ascent of the melt resulted in the formation of a consanguineous, residual, more iron-rich melt. This melt also contained highly mobile, supercritical, water-bearing fluids and was continuously enriched in platinum group elements and other incompatible elements. In several closing pulses, the platinum group element-enriched residual melts crystallized and sealed the inner ore pipe. Crystallization of the melt resulted in the coeval formation of Fe-rich olivine, chromite, and platinum group minerals. The non-sulfide platinum group element mineralization was introduced in the form of nanoparticles and small droplets of platinum group minerals, which coagulated to form larger grains during evolution of the mineralizing system. The suspended platinum group minerals acted as collectors of other platinum group elements and incompatible elements during generation and ascent of the melt. With decreasing temperature, the platinum group mineral grains annealed and recrystallized, leading to the formation of composite platinum group mineral grains, complex in","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133031346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiguan Lu, C. Lesher, Li‐Qiang Yang, M. Leybourne, Wen-yan He
{"title":"Genesis and mechanisms of metal enrichment in the Baimazhai Ni-Cu-(PGE) deposit, Ailaoshan Orogenic Belt, SW China","authors":"Yiguan Lu, C. Lesher, Li‐Qiang Yang, M. Leybourne, Wen-yan He","doi":"10.3749/canmin.2100057","DOIUrl":"https://doi.org/10.3749/canmin.2100057","url":null,"abstract":"\u0000 The ∼259 Ma Baimazhai Ni-Cu-(platinum-group element) deposit is located in the Ailaoshan-Red River fault zone on the southwest margin of the Yangtze Plate in the Jinping area of southeastern Yunnan Province. The intrusion is lenticular (∼530 m long × 190 m wide × 24–64 m thick) and concentrically zoned (margin to core) from gabbro through pyroxenite to peridotite. It contains ∼50 kt of Ni-Cu-(platinum-group element) mineralization, concentrically zoned (margin to core) from disseminated through net-textured to massive sulfides with an average grade of 1.03 wt.% Ni, 0.81 wt.% Cu, and 0.02∼0.69 ppm Pd+Pt. The sulfide assemblage comprises pyrrhotite, chalcopyrite, and pentlandite, with lesser magnetite, violarite, galena, and cobaltite. The mineralization is enriched in Ni-Cu-Co relative to the platinum-group elements and the host rocks are enriched in highly incompatible lithophile elements relative to moderately incompatible lithophile elements with high Th/Yb and intermediate Nb/Yb ratios. These host rocks, and those at most other Ni-Cu-platinum-group element deposits in the Emeishan Large Igneous Province, have high γOs and intermediate εNd values, indicating that they crystallized from a magma derived from a subduction-modified pyroxenite mantle source and modified by crustal contamination. The initial concentrations of metals in the primary magma are estimated to have been on the order of 200 ppm Ni and 100 ppm Cu, but only 0.4 ppb Pd, 0.2 ppb Pt, 0.005 ppb Rh, 0.02 ppb Ru, and 0.01 ppb Ir. The δ34S values of ores and separated sulfides range from 5.8‰ to 8.6‰, between the ∼10‰ value of sulfides in the metasedimentary country rocks and the 0 ± 0.5‰ value expected for magmas derived from MORB-type mantle, or the –2.5 ± 0.3‰ value expected for subduction-modified mantle, consistent with equilibration at magma:sulfide mass ratios (R factors) of 100–1000. Variations in Ir100 and Pd100 (metals in 100% sulfide) are consistent with 40–60% fractional crystallization of monosulfide solid solution to form Ni-Co-intermediate platinum-group element (Ru, Os, Ir)-rich massive ores and Cu-palladium/platinum-group elements (Pt, Pd, Rh)-Au-rich residual sulfide liquids. This process is also recorded by magnetite: Type I (early magmatic), type II (late magmatic), and type III (secondary) magnetites exhibit progressively lower Cr-Ti-V concentrations. The platinum-group element contents in base-metal minerals are low, and only pentlandite, violarite, and cobaltite contain detectable concentrations of Pd, Rh, and Ru. There is abundant textural evidence for metamorphic-hydrothermal alteration of sulfides in the Baimazhai intrusion, with secondary violarite, chalcopyrite, and pentlandite being enriched (Ag, Sb, Au, Pb) or depleted (Sn) in more mobile chalcophile elements. The different tectonic and petrogenetic settings of the Baimazhai and other deposits in China highlight the potential of Ni-Cu-platinum-group element deposits to occur in subduction or post-subdu","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116124750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chistyakova, R. Latypov, F. Kruger, F. Zaccarini
{"title":"Transgressive nature and chilled margins of the Upper Zone in the western Bushveld Complex, South Africa","authors":"S. Chistyakova, R. Latypov, F. Kruger, F. Zaccarini","doi":"10.3749/canmin.2100027","DOIUrl":"https://doi.org/10.3749/canmin.2100027","url":null,"abstract":"\u0000 The Upper Zone of the Bushveld Complex has long been known to have formed from a major influx of magma into the chamber that caused large-scale erosion of the chamber floor cumulates. The most dramatic manifestations of this process are two major gap areas (Northern and Southern) in the western Bushveld Complex in which the Upper Zone appears to have eroded away the underlying cumulates down to the very base of the Complex. However, due to almost complete lack of outcrops in the gap areas, no direct field observations have ever been reported to confirm the transgressive nature of the Upper Zone. Here, we present for the first time such observations from the Kameelhoek chromite mine located at the margin of the Northern Gap. In the open pit we have documented several transgressive depressions (up to 40 m in width) in the orthopyroxenite and chromitites of the Lower Critical Zone that are filled in with magnetite gabbro of the Upper Zone. The magnetite gabbro is chilled against the sidewalls of the depressions, forming glassy and fine-grained textured rocks with plagioclase laths arranged in radial clusters. Mineralogically and chemically, the magnetite gabbro correlates with cumulates from the lowermost part of the Upper Zone at its normal position in the complex. Three major points that have emerged from this study are: (1) the Critical Zone has been eroded away by magma that was parental to the Upper Zone, (2) this eroding magma was not the one that initiated formation of the Pyroxenite Marker, but rather the evolved melt that replenished the chamber at some later stage, and (3) the melt was phenocryst-free and likely derived from a deep-seated staging chamber. Our study thus supports a recent notion that even during the formation of the Upper Zone, the Bushveld chamber had still been operating as an open system that was replenished by melts from deeper magma sources.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115123647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. McDonald, D. Ames, I. Kjarsgaard, L. Cabri, William Zhe, K. C. Ross, D. Good
{"title":"Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, two new platinum-group minerals from the Marathon deposit, Coldwell Complex, Ontario, Canada: Descriptions, crystal-chemical considerations, and genetic implications","authors":"A. McDonald, D. Ames, I. Kjarsgaard, L. Cabri, William Zhe, K. C. Ross, D. Good","doi":"10.3749/canmin.2100022","DOIUrl":"https://doi.org/10.3749/canmin.2100022","url":null,"abstract":"\u0000 Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named.\u0000 Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical form","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122797896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Prevec, Savvas Anthony Largatzis, W. Brownscombe, T. Salge
{"title":"PGE distribution in Merensky wide-reef facies of the Bushveld Complex, South Africa: Evidence for localized hydromagmatic control","authors":"S. Prevec, Savvas Anthony Largatzis, W. Brownscombe, T. Salge","doi":"10.3749/canmin.2100033","DOIUrl":"https://doi.org/10.3749/canmin.2100033","url":null,"abstract":"\u0000 The wide-reef facies of the Merensky Reef in the eastern part of the western lobe of the Bushveld Complex was sampled in order to better resolve otherwise spatially constrained variation in highly siderophile elements across this geological unit. The platinum group element mineralogy and whole-rock highly siderophile element concentrations were measured across two vertical sections in close proximity. In one section, the Merensky Reef unit was bound by top and bottom platinum group elements-enriched horizons (reefs) with a well-developed pegmatoidal phase in the top third of the intrareef pyroxenite, but with neither a top nor a bottom chromitite present. The other drill core section featured a thin (<1 cm thick) chromitite layer associated with the highest platinum group element concentrations of any rock in this study as the bottom reef, but with a chromitite-absent top reef, and very poor development of the pegmatoid.\u0000 Primitive mantle-normalized profiles of the main lithological units show relatively flat, primitive mantle-like highly siderophile element abundances (Cr, V, Co, Ni, platinum group elements, Au and Cu) in the Merensky pyroxenite, with modest depletion in Ir-affiliated platinum group elements. The platinum group element-rich top and bottom reefs, and the pegmatoidal upper pyroxenites, display characteristic enrichment in the Pt-affiliated platinum group elements and undepleted Ir-affiliated platinum group elements. The leuconoritic hanging wall and footwall rocks show comparable highly siderophile element profiles, distinguished from one another by relative depletion in the Pt-affiliated platinum group elements of the footwall samples. The vertical variation in highly siderophile element abundances through both sections is characterized by low platinum group element abundances through the lower reef pyroxenite, with platinum group element, Au, and Cu ± Ni concentrations increasing through the upper pegmatoidal pyroxenite, and main enrichment peaks at the top and bottom reefs. Significant localized (centimeter-scale) zones of chalcophile metal depletion are present immediately above the top reef and below the bottom reef. In addition, a wider zone of Pt-affiliated platinum group elements (with Pd more depleted than Pt)-depletion was identified within the pegmatoidal pyroxenite around one meter below the top reef. The platinum group element mineralogy of the bottom reef consists mainly of platinum group element sulfides, with minor arsenides and antimonides. In contrast, the platinum group element mineralogy of the top reef, and the small amount of data from the intrareef pyroxenite, mainly consist of Pt-affiliated platinum group elements-Bi-tellurides. The Pt-sulfides are mainly equant, relatively coarse crystals (many grains between 50 to 100 μm2 area), contrasting with the Pt-affiliated platinum group elements-Sb-As and -Bi-Te minerals that tend be high aspect-ratio grains, occurring in veinlets or as rims on earlier-forming p","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127752505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution of noble metals in magmatic sulfide occurrences in the Montagnais Sill Complex, Labrador Trough, Canada","authors":"William D. Smith, W. Maier, I. Bliss","doi":"10.3749/canmin.2000119","DOIUrl":"https://doi.org/10.3749/canmin.2000119","url":null,"abstract":"\u0000 We have characterized the distribution of noble metals among six styles of magmatic sulfide mineralization in the Montagnais Sill Complex of the Labrador Trough in northern Québec using optical and electron microscopy combined with laser ablation-inductively coupled plasma-mass spectrometry trace element analysis of sulfides. The principal sulfide minerals include pyrrhotite, chalcopyrite, and pentlandite with accessory sphalerite and sulfarsenides. In addition, cubanite, troilite, and mackinawite are present in ultramafic-hosted assemblages. The precious metal mineral assemblages are dominated by tellurides, Ag-rich gold, and sperrylite which generally occur at the margins of sulfides. Few iridium-group platinum group element- and Rh-bearing grains were identified and mass-balance calculations show that these elements are generally hosted in pyrrhotite and pentlandite. Virtually all Pt and Au are hosted in precious metal grains, whereas Pd is distributed between precious metal grains and pentlandite. Where present, sulfarsenides are a key host of iridium-group platinum group element, Rh, Pd, Te, and Au. The presence of troilite, cubanite, and mackinawite and the absence of pentlandite exsolution lamellae in the ultramafic-hosted sulfides indicates an initial sulfide melt with a high metal/S ratio. Sulfarsenides present among globular sulfide assemblages derive from an immiscible As-rich melt that exsolved from the sulfide melt in response to the assimilation of the As-bearing floor rocks. In this study, the composition of sulfides is consistent with those derived from Ni-Cu-dominated deposits and not platinum group element-dominated deposits.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129392334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supergene mobilization and redistribution of platinum-group elements in the Merensky Reef, eastern Bushveld Complex, South Africa","authors":"Maximilian Korges, M. Junge, G. Borg, T. Oberthür","doi":"10.3749/canmin.2100023","DOIUrl":"https://doi.org/10.3749/canmin.2100023","url":null,"abstract":"\u0000 Near-surface supergene ores of the Merensky Reef in the Bushveld Complex, South Africa, contain economic grades of platinum-group elements, however, these are currently uneconomic due to low recovery rates. This is the first study that investigates the variation in platinum-group elements in pristine and supergene samples of the Merensky Reef from five drill cores from the eastern Bushveld. The samples from the Richmond and Twickenham farms show different degrees of weathering. The whole-rock platinum-group element distribution was studied by inductively coupled plasma-mass spectrometry and the platinum-group minerals were investigated by reflected-light microscopy, scanning electron microscopy, and electron microprobe analysis.\u0000 In pristine (“fresh”) Merensky Reef samples, platinum-group elements occur mainly as discrete platinum-group minerals, such as platinum-group element-sulfides (cooperite–braggite) and laurite as well as subordinate platinum-group element-bismuthotellurides and platinum-group element-arsenides, and also in solid solution in sulfides (especially Pd in pentlandite). During weathering, Pd and S were removed, resulting in a platinum-group mineral mineralogy in the supergene Merensky Reef that mainly consists of relict platinum-group minerals, Pt-Fe alloys, and Pt-oxides/hydroxides. Additional proportions of platinum-group elements are hosted by Fe-hydroxides and secondary hydrosilicates (e.g., serpentine group minerals and chlorite).\u0000 In supergene ores, only low recovery rates (ca. 40%) are achieved due to the polymodal and complex platinum-group element distribution. To achieve higher recovery rates for the platinum-group elements, hydrometallurgical or pyrometallurgical processing of the bulk ore would be required, which is not economically viable with existing technology.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131815973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sintering as a key process in the textural evolution of chromitite seams in layered mafic-ultramafic intrusions","authors":"Emma J. Hunt, B. O’Driscoll, J. Day","doi":"10.3749/canmin.2100021","DOIUrl":"https://doi.org/10.3749/canmin.2100021","url":null,"abstract":"\u0000 Nearly monomineralic stratiform chromitite seams of variable thickness (millimeters to meters) occur in many of the world's layered mafic-ultramafic intrusions. These seams are often associated with economically significant quantities of platinum group metals, yet the petrogenesis of these societally important materials remains enigmatic. Here we evaluate processes associated with late-magmatic (postcumulus) textural maturation of chromitite seams from four layered mafic-ultramafic intrusions of different ages and sizes. From largest to smallest, these intrusions are the ∼2060 Ma Bushveld Complex (South Africa), the ∼2710 Ma Stillwater Complex (USA), the ∼1270 Ma Muskox Intrusion (Canada), and the ∼60 Ma Rum Eastern Layered Intrusion (Scotland). Three endmember chromitite textures are described, based on chromite grain size and degree of textural equilibration: (1) coarse-grained chromite crystals (>0.40 mm) that occur in the central portions of seams and exhibit high degrees of solid-state textural equilibration; (2) fine-grained chromite crystals (0.11–0.44 mm) at the margins of seams in contact with and disseminated throughout host anorthosite or pyroxenite; and (3) fine-grained chromite crystals (0.005–0.28 mm) hosted within intra-seam orthopyroxene, clinopyroxene, and olivine oikocrysts. Crystal size distribution and spatial distribution pattern analyses are consistent with coarsening occurring through processes of textural maturation, including the sintering of grains by coalescence. We propose that textural maturation initially occurred in the supra-solidus state followed by an important stage of solid-state textural maturation and that these equilibration processes played a major role in the eventual microstructural and compositional homogeneity of the chromitite seams.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125548744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of post-cumulus alteration on the distribution of chalcophile elements in magmatic sulfide deposits and implications for the formation of low-S-high-PGE zones: The Luanga deposit, Carajás Mineral Province, Brazil","authors":"E. Mansur, S. Barnes, C. F. Ferreira Filho","doi":"10.3749/canmin.2100018","DOIUrl":"https://doi.org/10.3749/canmin.2100018","url":null,"abstract":"\u0000 Most of the World's platinum-group element ore deposits occur as thin stratiform layers within layered intrusions. These layers generally contain disseminated base-metal sulfides or chromite. However, cryptic platinum-group element deposits also occur without chromite or base-metal sulfides in what are known as low-S-high platinum-group element deposits. The origin of these deposits is not clearly understood. The Luanga Complex hosts the largest platinum-group elements resource in South America (i.e., 142 Mt at 1.24 ppm Pt + Pd + Au and 0.11% Ni) and hosts both a platinum-group element deposit containing disseminated base-metal sulfides (style 1) and a low-S-high platinum-group element deposit (style 2). It therefore offers the opportunity to compare the two deposit types in the same overall geological setting and consider how the low-S-high platinum-group element deposit could have formed. The first deposit style is termed the Sulfide zone and consists of a 10–50 meter-thick interval with disseminated base metal sulfides, whereas the second style is named low-S-high-Pt-Pd zone and consists of 2–10 meter-thick discontinuous lenses of 1–5 meter-thick sulfide- and oxide-free harzburgite and orthopyroxenite with discrete platinum-group minerals. Secondary assemblages commonly replace primary igneous minerals to a variable extent throughout the deposit, and thus allow for investigating the effects of post-cumulus alteration on the distribution of a wide range of chalcophile elements in a magmatic sulfide deposit at both whole-rock and mineral scale. This study presents the whole-rock distribution of S, platinum-group elements, and Te, As, Bi, Sb, and Se in both mineralization styles and the concentration of trace elements in base-metal sulfides from the Sulfide zone. The Sulfide zone has Pt/Pd ratios around 0.5 and high concentrations of Te, As, Bi, Sb, and Se, whereas the low-S-high-platinum-group element zone has Pt/Pd ratios greater than 1 and much lower Se, Te, and Bi concentrations, but comparable As and Sb contents. This is reflected in the platinum-group element assemblage, comprising bismuthotellurides in the Sulfide zone and mostly arsenides and antimonides in the low-S, high platinum-group elements zone. Moreover, the base-metal sulfides from the Sulfide zone have anomalously high As contents (50–500 ppm), which suggest that the sulfide liquid segregated from a very As-rich silicate magma, possibly illustrated by an average komatiitic basalt that assimilated a mixture of upper continental crust and black shales. We interpret the low-S-high platinum-group elements zone as a product of S loss from magmatic sulfides during post-cumulus alteration of the Luanga Complex. Selenium, Te, Bi, and Pd were also lost together with S, whereas As and Sb were expelled from base-metal sulfide structures and combined with platinum-group elements to form platinum-group minerals, suggesting they may play a role fixating platinum-group elements during altera","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124460011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}