In Silico Pharmacology最新文献

筛选
英文 中文
In-silico mining to glean SNPs of pharmaco-clinical importance: an investigation with reference to the Indian populated SNPs. 在计算机上挖掘以收集具有药物临床重要性的SNPs:一项参考印度人口SNPs的调查。
In Silico Pharmacology Pub Date : 2023-07-19 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00154-4
Anamika Yadav, Shivani Srivastava, Shivani Tyagi, Neelam Krishna, Pramod Katara
{"title":"<i>In-silico</i> mining to glean SNPs of pharmaco-clinical importance: an investigation with reference to the Indian populated SNPs.","authors":"Anamika Yadav, Shivani Srivastava, Shivani Tyagi, Neelam Krishna, Pramod Katara","doi":"10.1007/s40203-023-00154-4","DOIUrl":"10.1007/s40203-023-00154-4","url":null,"abstract":"<p><p>Drugs pharmacology is defined by pharmacokinetics and pharmacodynamics and both of them are affected by genetic variability. Genetic variability varies from population to population, and sometimes even within the population, it exists. Single nucleotide polymorphisms (SNPs) are one of the major genetic variability factors which are found to be associated with the pharmacokinetics and pharmacodynamics process of a drug and are responsible for variable drug response and clinical phenotypes. Studies of SNPs can help to perform genome-wide association studies for their association with pharmacological and clinical events, at the same time; their information can direct genome-wide association studies for their use as biomarkers. With the aim to mine and characterize Indian populated SNPs of pharmacological and clinical importance. Two hundred six candidate SNPs belonging to 43 genes were retrieved from Indian Genome Variation Database. The distribution pattern of considered SNPs was observed against all five world super-populations (AFR, AMR, EAS, EUR, and SAS). Further, their annotation was done through SNP-nexus by considering Human genome reference builds - hg38, pharmacological and clinical information was supplemented by PharmGKB and ClinVar database. At last, to find out the association between SNPs linkage disequilibrium was observed in terms of r<sup>2</sup>. Overall, the study reported 53 pharmaco-clinical active SNPs and found 24 SNP-pairs as potential markers, and recommended their clinical and experimental validation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00154-4.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9855556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular docking appraisal of Dysphania ambrosioides phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene. 氨溴香植物化学物质作为一个关键的三阴性乳腺癌症驱动基因的潜在抑制剂的分子对接评估。
In Silico Pharmacology Pub Date : 2023-06-14 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00152-6
Lateef O Anifowose, Oluwatomiwa K Paimo, Fikayo N Adegboyega, Oludare M Ogunyemi, Rukayat O Akano, Sherif F Hammad, Mohamed A Ghazy
{"title":"Molecular docking appraisal of <i>Dysphania ambrosioides</i> phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene.","authors":"Lateef O Anifowose, Oluwatomiwa K Paimo, Fikayo N Adegboyega, Oludare M Ogunyemi, Rukayat O Akano, Sherif F Hammad, Mohamed A Ghazy","doi":"10.1007/s40203-023-00152-6","DOIUrl":"10.1007/s40203-023-00152-6","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. <i>Dysphania ambrosioides</i> is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from <i>D. ambrosioides</i>. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application.</p><p><strong>Graphical abstract: </strong>A structure-based virtual screening and simulation of <i>Dysphania ambrosioides</i> phytochemicals in the active pocket of AKT 1 and 2 isoforms.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10028774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular docking and dynamics simulation approach of Camellia sinensis leaf extract derived compounds as potential cholinesterase inhibitors. 山茶叶提取物衍生化合物作为潜在胆碱酯酶抑制剂的分子对接和动力学模拟方法。
In Silico Pharmacology Pub Date : 2023-05-28 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00151-7
Md Eram Hosen, Md Sojiur Rahman, Md Omar Faruqe, Md Khalekuzzaman, Md Asadul Islam, Uzzal Kumar Acharjee, Rashed Zaman
{"title":"Molecular docking and dynamics simulation approach of <i>Camellia sinensis</i> leaf extract derived compounds as potential cholinesterase inhibitors.","authors":"Md Eram Hosen, Md Sojiur Rahman, Md Omar Faruqe, Md Khalekuzzaman, Md Asadul Islam, Uzzal Kumar Acharjee, Rashed Zaman","doi":"10.1007/s40203-023-00151-7","DOIUrl":"10.1007/s40203-023-00151-7","url":null,"abstract":"<p><p>The tea plant (<i>Camellia sinensis</i>) belongs to the family Theaceae and contains many phytochemicals that are effective against various diseases, including neurodegenerative disorders. In this study, we aimed to characterize the phytochemicals present in the methanolic and n-hexane leaf extracts of <i>C. sinensis</i> using GC-MS, FTIR, and UV-visible analysis. We detected a total of 19 compounds of different chemical classes. We also performed molecular docking studies using the GC-MS detected phytochemicals, targeting acetylcholinesterase (AChE, PBD ID: 4BDT) and butyrylcholinesterase (BChE, PDB ID: 6QAB), which are responsible for the breakdown of the neurotransmitter acetylcholine (ACh). This breakdown leads to dementia and cognitive decline in Alzheimer's patients. The compounds Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- and Benzene, 1,3-bis(1,1-dimethylethyl) showed better binding affinity against AChE, while dl-.alpha.-Tocopherol and Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- showed better binding affinity against BChE. We determined the stability and rigidity of these best docked complexes through molecular dynamics simulation for a period of 100 ns. All complexes showed stability in terms of SASA, Rg, and hydrogen bonds, but some variations were found in the RMSD values. Our ADMET analysis revealed that all lead compounds are non-toxic. Therefore, these compounds could be potential inhibitors of AChE and BChE.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9553571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential peptidyl arginine deiminase type 4 inhibitors from Morinda citrifolia: a structure-based drug design approach. 海巴戟中潜在的肽基精氨酸脱氨酶 4 型抑制剂:基于结构的药物设计方法。
In Silico Pharmacology Pub Date : 2023-05-02 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00147-3
Debashis Roy Chowdhury, Rajat Ghosh, Sudhan Debnath, Samhita Bhaumik
{"title":"Potential peptidyl arginine deiminase type 4 inhibitors from <i>Morinda citrifolia</i>: a structure-based drug design approach.","authors":"Debashis Roy Chowdhury, Rajat Ghosh, Sudhan Debnath, Samhita Bhaumik","doi":"10.1007/s40203-023-00147-3","DOIUrl":"10.1007/s40203-023-00147-3","url":null,"abstract":"<p><p>The World Health Organization estimates that more than 23 million individuals worldwide suffer from rheumatoid arthritis (RA), a chronic systemic autoimmune disease and experts predict that the number of RA patients may double by 2030. A substantial portion of RA patients do not respond effectively to the treatment that are already available therefore there is an urgent need of innovative new drugs. Over the past several years, Peptidyl Arginine Deiminase Type 4 (PAD4) receptors have become potential therapeutic targets for the treatment of RA. The main objective of the present study is to identify potential PAD4 inhibitors from edible fruits <i>Morinda citrifolia</i>. Structure based virtual screening (VS) of 60 compounds from <i>M. citrifolia</i> were performed to identify PAD4 inhibitors. The virtual screening of compounds resulted ten hits having XP-Glide score greater than the co-ligand (XPGS: - 8.341 kcal/mol). Three hits NF_15, NF_34, and NF_35 exhibited admirable MM-GBSA dG binding energy - 52.577, - 46.777, and - 60.711 kcal/mol, respectively. These three compounds were chosen for 100 ns molecular dynamics (MD) simulations in order to evaluate the stability and interactions. The protein-ligand complex with the highest level of stability was revealed to be NF_35. Therefore, <i>M. citrifolia</i> fruits may be beneficial in the treatment and prevention of rheumatoid arthritis since it contains potential hits<i>.</i></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00147-3.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9424121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach. 通过硅学方法探索天然植物化学物质对 SARS-CoV-2 Nsp14 的药理作用。
In Silico Pharmacology Pub Date : 2023-04-28 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00143-7
Arkajit De, Somdatta Bhattacharya, Bishal Debroy, Arijit Bhattacharya, Kuntal Pal
{"title":"Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach.","authors":"Arkajit De, Somdatta Bhattacharya, Bishal Debroy, Arijit Bhattacharya, Kuntal Pal","doi":"10.1007/s40203-023-00143-7","DOIUrl":"10.1007/s40203-023-00143-7","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), possesses an important bifunctional nonstructural protein (nsp14) with a C-terminal N7-methyltransferase (N7-MTase) domain and an N-terminal domain with exoribonuclease (ExoN) activity that is required for maintaining high-fidelity viral replication. Viruses use the error-prone replication mechanism, which results in high mutation rates, to adapt quickly to stressful situations. The efficiency with which nsp14 removes mismatched nucleotides due to the presence of ExoN activity protects viruses from mutagenesis. We investigated the pharmacological role of the phytochemicals (Baicalein, Bavachinin, Emodin, Kazinol F, Lycorine, Sinigrin, Procyanidin A2, Tanshinone IIA, Tanshinone IIB, Tomentin A, and Tomentin E) against the highly conserved nsp14 protein using docking-based computational analyses in search of new potential natural drug targets. The selected eleven phytochemicals failed to bind the active site of N7-Mtase in the global docking study, while the local docking study identified the top five phytochemicals with high binding energy scores ranging from - 9.0 to - 6.4 kcal/mol. Procyanidin A2 and Tomentin A showed the highest docking score of - 9.0 and - 8.1 kcal/mol, respectively. Local docking of isoform variants was also conducted, yielding the top five phytochemicals, with Procyanidin A1 having the highest binding energy value of - 9.1 kcal/mol. The phytochemicals were later tested for pharmacokinetics and pharmacodynamics analysis for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) which resulted in choosing Tomentin A as a potential candidate. The molecular dynamics simulations studies of nsp14 revealed significant conformational changes upon complex formation with the identified compound, implying that these phytochemicals could be used as safe nutraceuticals which will impart long-term immunological competence in the human population against CoVs.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00143-7.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9773942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico bioprospecting of receptors for Doderlin: an antimicrobial peptide isolated from Lactobacillus acidophilus. 从嗜酸乳杆菌中分离出的抗菌肽 Doderlin 受体的硅学生物勘探。
In Silico Pharmacology Pub Date : 2023-04-25 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00149-1
Elias Jorge Muniz Seif, Marcelo Yudi Icimoto, Pedro Ismael da Silva Junior
{"title":"In silico bioprospecting of receptors for Doderlin: an antimicrobial peptide isolated from <i>Lactobacillus acidophilus</i>.","authors":"Elias Jorge Muniz Seif, Marcelo Yudi Icimoto, Pedro Ismael da Silva Junior","doi":"10.1007/s40203-023-00149-1","DOIUrl":"10.1007/s40203-023-00149-1","url":null,"abstract":"<p><p>The emergence of resistant bacteria strains against traditional antibiotics and treatments increases each year. Doderlin is a cationic and amphiphilic peptide active against gram-positive, negative and yeast stains. The aim of the present work was prospect potentials receptors associated of antimicrobial activity of Doderlin using in silico bioinformatics tools. To search for potential targets of Doderlin, PharmMapper software was used. Molecular docking between Doderlin and the receptor was performed by PatchDock. Additional interaction and ligand site prediction for each receptor was performed by I-TASSER software. Those PDB Id, 1XDJ (score: 11,746), 1JMH (score: 11,046), 1YR3 (score: 10,578), 1NG3 (score: 10,082) showed highest dock score. Doderlin was found to predicted/real sites co-localize with 1XDJ and 1JMH, enzymes accountable for nitrogenic bases synthesis. The resulting receptor bioprospecting is highly correlated and suggests that Doderlin might act by interfering with DNA metabolism/production of bacteria, altering microorganism homeostasis and growth impairment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00149-1.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9357088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An insight into the mechanisms of action of selected bioactive compounds against epigenetic targets of prostate cancer: implications on histones modifications. 洞察特定生物活性化合物对前列腺癌表观遗传靶点的作用机制:对组蛋白修饰的影响。
In Silico Pharmacology Pub Date : 2023-04-15 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00148-2
Babangida Sanusi Katsayal, Gilead Ebiegberi Forcados, Abdurrahman Pharmacy Yusuf, Yunus Aisha Lawal, Shehu Aisha Jibril, Hussaini Nuraddeen, Musa Mubarak Ibrahim, Idris Zubairu Sadiq, Murtala Bello Abubakar, Ibrahim Malami, Ibrahim Babangida Abubakar, Aliyu Muhammad
{"title":"An insight into the mechanisms of action of selected bioactive compounds against epigenetic targets of prostate cancer: implications on histones modifications.","authors":"Babangida Sanusi Katsayal, Gilead Ebiegberi Forcados, Abdurrahman Pharmacy Yusuf, Yunus Aisha Lawal, Shehu Aisha Jibril, Hussaini Nuraddeen, Musa Mubarak Ibrahim, Idris Zubairu Sadiq, Murtala Bello Abubakar, Ibrahim Malami, Ibrahim Babangida Abubakar, Aliyu Muhammad","doi":"10.1007/s40203-023-00148-2","DOIUrl":"10.1007/s40203-023-00148-2","url":null,"abstract":"<p><p>Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modeling of PET imaging agents for vesicular acetylcholine transporter (VAChT) protein binding affinity: application of 2D-QSAR modeling and molecular docking techniques. PET 成像剂与囊泡乙酰胆碱转运体 (VAChT) 蛋白结合亲和力的计算建模:二维 QSAR 建模和分子对接技术的应用。
In Silico Pharmacology Pub Date : 2023-04-04 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00146-4
Priyanka De, Kunal Roy
{"title":"Computational modeling of PET imaging agents for vesicular acetylcholine transporter (VAChT) protein binding affinity: application of 2D-QSAR modeling and molecular docking techniques.","authors":"Priyanka De, Kunal Roy","doi":"10.1007/s40203-023-00146-4","DOIUrl":"10.1007/s40203-023-00146-4","url":null,"abstract":"<p><p>The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including learning and memory with widespread innervation in the cortex, subcortical structures, and the cerebellum. Cholinergic receptors, transporters, or enzymes associated with many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are potential imaging targets. In the present study, we have developed 2D-quantitative structure-activity relationship (2D-QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against presynaptic vesicular acetylcholine transporter (VAChT). VAChT assists in the transport of ACh into the presynaptic storage vesicles, and it becomes one of the main targets for the diagnosis of various neurodegenerative diseases. In our work, we aimed to understand the important structural features of the PET imaging agents required for their binding with VAChT. This was done by feature selection using a Genetic Algorithm followed by the Best Subset Selection method and developing a Partial Least Squares- based 2D-QSAR model using the best feature combination. The developed QSAR model showed significant statistical performance and reliability. Using the features selected in the 2D-QSAR analysis, we have also performed similarity-based chemical read-across predictions and obtained encouraging external validation statistics. Further, we have also performed molecular docking analysis to understand the molecular interactions occurring between the PET imaging agents and the VAChT receptor. The molecular docking results were correlated with the QSAR features for a better understanding of the molecular interactions. This research serves to fulfill the experimental data gap, highlighting the applicability of computational methods in the PET imaging agents' binding affinity prediction.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00146-4.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of piperine analogs against prostate cancer targeting AKT1 kinase domain through network pharmacological analysis. 通过网络药理学分析评估以 AKT1 激酶域为靶点的胡椒碱类似物对前列腺癌的疗效。
In Silico Pharmacology Pub Date : 2023-03-28 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00145-5
Nayana Prakash
{"title":"Evaluation of piperine analogs against prostate cancer targeting AKT1 kinase domain through network pharmacological analysis.","authors":"Nayana Prakash","doi":"10.1007/s40203-023-00145-5","DOIUrl":"10.1007/s40203-023-00145-5","url":null,"abstract":"<p><p>Prostate cancer is the second most fatal malignancy in men after lung cancer, and the fifth leading cause of death. Piperine has been utilized for its therapeutic effects since the time of Ayurveda. According to traditional Chinese medicine, piperine has a wide variety of pharmacological effects, including anti-inflammatory, anti-cancer, and immune-regulating properties. Based on the previous study, Akt1 (protein kinase B) is one of the targets of piperine, it belongs to the group of oncogenes and the mechanism of the Akt1 is an interesting approach for anticancer drug design. From the peer-reviewed literature, five piperine analogs were identified altogether, and a combinatorial collection was formed. However, may not be entirely clear how piperine analogs work to prevent prostate cancer. In the present study, serine-threonine kinase domain Akt1 receptor was employed to analyze the efficacy of piperine analogs against standards using in silico methodologies. Additionally, their drug-likeness was evaluated utilizing online servers like Molinspiration and preADMET. Using AutoDock Vina, the interactions of five piperine analogs and two standards with Akt1 receptor was investigated. Our study reveals that piperine analog-2 (pip2) shows highest binding affinity (<b>- </b>6.0 kcal/mol) by forming 6 hydrogen bonds with more hydrophobic interactions compared to other four analogs and standards. In conclusion, the piperine analog pip2, which shows strong inhibition affect in Akt1-cancer pathway, may be employed as chemotherapeutic drugs.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9246824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational design, molecular properties, ADME, and toxicological analysis of substituted 2,6-diarylidene cyclohexanone analogs as potent pyridoxal kinase inhibitors. 作为强效吡哆醛激酶抑制剂的 2,6-二芳基环己酮类似物的计算设计、分子特性、ADME 和毒理学分析。
In Silico Pharmacology Pub Date : 2023-03-23 eCollection Date: 2023-01-01 DOI: 10.1007/s40203-023-00142-8
Fabian Audu Ugbe, Gideon Adamu Shallangwa, Adamu Uzairu, Ibrahim Abdulkadir
{"title":"Computational design, molecular properties, ADME, and toxicological analysis of substituted 2,6-diarylidene cyclohexanone analogs as potent pyridoxal kinase inhibitors.","authors":"Fabian Audu Ugbe, Gideon Adamu Shallangwa, Adamu Uzairu, Ibrahim Abdulkadir","doi":"10.1007/s40203-023-00142-8","DOIUrl":"10.1007/s40203-023-00142-8","url":null,"abstract":"<p><p>Leishmaniasis is one of the tropical diseases which affects over 12 million people mainly in the tropical regions of the world and is caused by the leishmanial parasites transmitted by the female sand fly. The lack of vaccines to prevent leishmaniasis, as well as limitations of existing therapies necessitated this study which was focused on a combined virtual docking screening and 3-D QSAR modeling approach to design some diarylidene cyclohexanone analogs, while also performing pharmacokinetic analysis and Molecular Dynamic (MD) simulation to ascertain their drug-ability. As a result, the built 3-D QSAR model was found to satisfy the requirement of a good model with R<sup>2</sup> = 0.9777, SDEC = 0.0593, F-test = 105.028, and Q<sup>2</sup> <sub>LOO</sub> = 0.6592. The template (compound 9, MolDock score =  - 161.064) and all seven newly designed analogs were found to possess higher docking scores than the reference drug (Pentamidine, Moldock score = - 137.827). The results of the pharmacokinetic analysis suggest 9 and the new molecules (9a, b, c, e, and f) as orally bioavailable with good ADME and safe toxicological profiles. These molecules also showed good binding interactions with the receptor (pyridoxal kinase). Additionally, the MD simulation result confirmed the stability of the tested protein-ligand complexes, with an estimated ∆G binding (MM/GBSA) of - 65.2177 kcal/mol and - 58.433 kcal/mol for 9_6K91 and 9a_6K91 respectively. Hence, the new compounds, especially 9a could be considered potential anti-leishmanial inhibitors.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9545043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信