IEMT/IMC Symposium, 1st [Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference]最新文献

筛选
英文 中文
High Density Bga Substrates Fabricated By Laser Technologies 激光技术制备高密度Bga衬底
T. Hirakawa, F. Sato
{"title":"High Density Bga Substrates Fabricated By Laser Technologies","authors":"T. Hirakawa, F. Sato","doi":"10.5104/JIEP.1.410","DOIUrl":"https://doi.org/10.5104/JIEP.1.410","url":null,"abstract":"High-density hall grid array (BGA) substrates were developed using laser technologies High-energy, short-pulse COz laser was found to be a high-quality, cost-competitive source of processing organic materials. Either a polyimide film oi an aramid-based laminate was used to form advanced BGAs with no through-holes that had been a cause of poor moisture resistance It was found that the tape BGA has sutfcient coplanarity and thinner, lighter features than conventional PBGAs, and also has much higher I-eliability. Independent double-sided traces were obtained using double-sided polyimide tape and processing by a laser to get bonding shelves and ball pads, and an extremely high pin count was obtained When the laser drilling, technology was applied for a double-sided aramid-based laminate, a flip-chip, chip-scale package (CSP) with nonsoldermask-defined ball pads was obtained For multilayer BGA with bonding shelves, the laser was used to forin multiple-tier bonding shelves using an aramid-based laminate The multilayeiboard was attached to a heat slug to form a cavity-down BGA","PeriodicalId":13256,"journal":{"name":"IEMT/IMC Symposium, 1st [Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference]","volume":"18 1","pages":"295-298"},"PeriodicalIF":0.0,"publicationDate":"1997-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75413155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronics Packaging Technology Update: BGA, CSP, DCA, And Flip Chip 电子封装技术更新:BGA, CSP, DCA和倒装芯片
J. Lau
{"title":"Electronics Packaging Technology Update: BGA, CSP, DCA, And Flip Chip","authors":"J. Lau","doi":"10.1108/03056129710370277","DOIUrl":"https://doi.org/10.1108/03056129710370277","url":null,"abstract":"The explosive growth of high‐density packaging has created a tremendous impact on the electronics assembly and manufacturing industry. Ball Grid Array (BGA), Chip Scale Packaging (CSP), Direct Chip Attach (DCA), and flip‐chip technologies are taking the lead in this advanced manufacturing process. Many major equipment makers and leading electronic companies are now gearing up for these emerging and advanced packaging technologies. In this paper, they will be briefly discussed.","PeriodicalId":13256,"journal":{"name":"IEMT/IMC Symposium, 1st [Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference]","volume":"36 1","pages":"32-36"},"PeriodicalIF":0.0,"publicationDate":"1997-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73877123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信