IEEE Transactions on Services Computing最新文献

筛选
英文 中文
Implicit Supervision-Assisted Graph Collaborative Filtering for Third-Party Library Recommendation 用于第三方图书馆推荐的隐式监督辅助图协同过滤技术
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562349
Lianrong Chen, Mingdong Tang, Naidan Mei, Fenfang Xie, Guo Zhong, Qiang He
{"title":"Implicit Supervision-Assisted Graph Collaborative Filtering for Third-Party Library Recommendation","authors":"Lianrong Chen, Mingdong Tang, Naidan Mei, Fenfang Xie, Guo Zhong, Qiang He","doi":"10.1109/tsc.2025.3562349","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562349","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"5 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Cross-Chain Hierarchical Federated Learning Framework for Enhancing Service Security and Communication Efficiency 一种提高服务安全性和通信效率的跨链分层联邦学习框架
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562329
Li Duan, He Huang, Chao Li, Wei Ni, Bo Cheng
{"title":"A Novel Cross-Chain Hierarchical Federated Learning Framework for Enhancing Service Security and Communication Efficiency","authors":"Li Duan, He Huang, Chao Li, Wei Ni, Bo Cheng","doi":"10.1109/tsc.2025.3562329","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562329","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"61 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Puncturable Signature and Applications in Privacy-Aware Data Reporting for VDTNs 可标点符号及其在面向 VDTN 的隐私意识数据报告中的应用
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562318
Chenhao Wang, Yang Ming, Hang Liu, Songnian Zhang, Rongxing Lu
{"title":"Puncturable Signature and Applications in Privacy-Aware Data Reporting for VDTNs","authors":"Chenhao Wang, Yang Ming, Hang Liu, Songnian Zhang, Rongxing Lu","doi":"10.1109/tsc.2025.3562318","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562318","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"57 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LEAGAN: A Decentralized Version-Control Framework for Upgradeable Smart Contracts LEAGAN:用于可升级智能合约的去中心化版本控制框架
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562323
Gulshan Kumar, Rahul Saha, Mauro Conti, William J Buchanan
{"title":"LEAGAN: A Decentralized Version-Control Framework for Upgradeable Smart Contracts","authors":"Gulshan Kumar, Rahul Saha, Mauro Conti, William J Buchanan","doi":"10.1109/tsc.2025.3562323","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562323","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"15 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing LLM QoS through Cloud-Edge Collaboration: A Diffusion-based Multi-Agent Reinforcement Learning Approach 通过云边缘协作增强LLM QoS:一种基于扩散的多智能体强化学习方法
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562362
Zhi Yao, Zhiqing Tang, Wenmian Yang, Weijia Jia
{"title":"Enhancing LLM QoS through Cloud-Edge Collaboration: A Diffusion-based Multi-Agent Reinforcement Learning Approach","authors":"Zhi Yao, Zhiqing Tang, Wenmian Yang, Weijia Jia","doi":"10.1109/tsc.2025.3562362","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562362","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"54 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seamless Graph Task Scheduling over Dynamic Vehicular Clouds: A Hybrid Methodology for Integrating Pilot and Instantaneous Decisions 动态车辆云上的无缝图任务调度:一种集成驾驶员和瞬时决策的混合方法
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562340
Bingshuo Guo, Minghui Liwang, Xiaoyu Xia, Li Li, Zhenzhen Jiao, Seyyedali Hosseinalipour, Xianbin Wang
{"title":"Seamless Graph Task Scheduling over Dynamic Vehicular Clouds: A Hybrid Methodology for Integrating Pilot and Instantaneous Decisions","authors":"Bingshuo Guo, Minghui Liwang, Xiaoyu Xia, Li Li, Zhenzhen Jiao, Seyyedali Hosseinalipour, Xianbin Wang","doi":"10.1109/tsc.2025.3562340","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562340","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"7 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Impostors: An Efficient and Scalable Scheme for Location Privacy Preservation 人工冒充者:一种有效且可扩展的位置隐私保护方案
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562354
Hao Tang, Kunfeng Chen, Zhiyang Xie, Cheng Wang
{"title":"Artificial Impostors: An Efficient and Scalable Scheme for Location Privacy Preservation","authors":"Hao Tang, Kunfeng Chen, Zhiyang Xie, Cheng Wang","doi":"10.1109/tsc.2025.3562354","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562354","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"241 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-View Deep Learning Approach for Predictive Business Process Monitoring 用于预测性业务流程监控的双视角深度学习方法
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-18 DOI: 10.1109/tsc.2025.3562344
Binbin Chen, Shuangyao Zhao, Qiang Zhang, Chunhua Tang, Leilei Lin
{"title":"Dual-View Deep Learning Approach for Predictive Business Process Monitoring","authors":"Binbin Chen, Shuangyao Zhao, Qiang Zhang, Chunhua Tang, Leilei Lin","doi":"10.1109/tsc.2025.3562344","DOIUrl":"https://doi.org/10.1109/tsc.2025.3562344","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"17 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Replication-Based Aggregation Verification and Correctness Assurance Scheme for Federated Learning 一种高效的基于复制的联邦学习聚合验证和正确性保证方案
IF 5.5 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-11 DOI: 10.1109/TSC.2024.3520833
Shihong Wu;Yuchuan Luo;Shaojing Fu;Yingwen Chen;Ming Xu
{"title":"An Efficient Replication-Based Aggregation Verification and Correctness Assurance Scheme for Federated Learning","authors":"Shihong Wu;Yuchuan Luo;Shaojing Fu;Yingwen Chen;Ming Xu","doi":"10.1109/TSC.2024.3520833","DOIUrl":"10.1109/TSC.2024.3520833","url":null,"abstract":"Federated learning(FL), enabling multiple clients collaboratively to train a model via a parameter server, is an effective approach to address the issue of data silos. However, due to the self-interest and laziness of servers, they may not correctly aggregate the global model parameters, which will cause the final model trained to deviate from the training goal. In the existing proposals, the cryptography-based verification scheme involves heavy computation overheads. On the other hand, the replication-based verification method, relying on a dual-server architecture, can ensure the correctness of aggregation and reduce computation overheads, but incur at least twice the communication cost as that of the task itself. To address these issues, we propose a novel replication-based aggregation scheme for FL, which enables efficient verification and stronger correctness assurance. The scheme employs a main-secondary server architecture, which allows the secondary servers to partakes in aggregation tasks at a predetermined probability, consequently mitigating the validation overhead. Moreover, we resort to the game theory and design a Learning Contract to impose penalties on dishonest servers, enforcing rational servers to correctly compute global model parameters. Under the use of Betrayal Contract to prevent collusion among servers, we further design a training game to efficiently verify global model parameters and ensure their correctness. Finally, we analyze the correctness of the proposed scheme and demonstrate that the computational overhead of our scheme is <inline-formula><tex-math>$frac{{n + 1}}{{2n}}$</tex-math></inline-formula> of the previous replication-based validation scheme, obtaining a significant reduction in communication cost, where <inline-formula><tex-math>$n$</tex-math></inline-formula> means the training rounds. Experimental results further validate our deduction.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 2","pages":"633-646"},"PeriodicalIF":5.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-Enhanced Federated Expanded Graph Learning for Secure QoS Prediction 用于安全QoS预测的隐私增强联邦扩展图学习
IF 8.1 2区 计算机科学
IEEE Transactions on Services Computing Pub Date : 2025-04-10 DOI: 10.1109/tsc.2025.3559613
Guobing Zou, Zhi Yan, Shengxiang Hu, Yanglan Gan, Bofeng Zhang, Yixin Chen
{"title":"Privacy-Enhanced Federated Expanded Graph Learning for Secure QoS Prediction","authors":"Guobing Zou, Zhi Yan, Shengxiang Hu, Yanglan Gan, Bofeng Zhang, Yixin Chen","doi":"10.1109/tsc.2025.3559613","DOIUrl":"https://doi.org/10.1109/tsc.2025.3559613","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"4 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143819605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信