Hernani D. Chantre, Nelson Luis Saldanha da Fonseca
{"title":"The Location Problem for the Provisioning of Protected Slices in NFV-Based MEC Infrastructure","authors":"Hernani D. Chantre, Nelson Luis Saldanha da Fonseca","doi":"10.1109/JSAC.2020.2986869","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986869","url":null,"abstract":"The support of stringent requirements such as ultra-low latency and ultra-reliability of the forthcoming 5G services poses several challenges to telecommunications infrastructure providers. Network Function Virtualization, multi-access edge computing (MEC), and network slicing capabilities can help the support of such requirements. However, a trade-off between the cost of resource deployment and the support of service requirements needs to be taken into account in the design of NFV-based 5G networks. In this paper, we investigate the MEC location problem, which aims at selecting locations to place MECs hosting protected slices. We propose a MEC location problem enhanced with 1: 1 and <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> protection schemes for the provisioning of protected slices. In the 1: 1 scheme, protection is assured by reserving a backup slice for each tenant, whereas in the <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> scheme, a backup slice is shared among <inline-formula> <tex-math notation=\"LaTeX\">$N$ </tex-math></inline-formula> tenants. The problem is modeled as a multi-criteria optimization problem and solved by the employment of a multi-objective evolutionary non-dominated sorting genetic algorithm. A comparison between the 1: 1 and <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> protection schemes is carried out in the context of 5G network slicing. Results show that the protection scheme 1: 1 can reduce the response time, at a higher deployment cost when compared to the <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> scheme.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1505-1514"},"PeriodicalIF":16.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41973010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building and Testing Modular Programs for Programmable Data Planes","authors":"Peng Zheng, Theophilus A. Benson, Chengchen Hu","doi":"10.1109/JSAC.2020.2986693","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986693","url":null,"abstract":"Programmable data planes, PDPs, enable an unprecedented level of flexibility and have emerged as a promising alternative to existing data planes. Despite the rapid development and prototyping cycles that PDPs promote, the existing PDP ecosystem lacks appropriate abstractions and algorithms to support these rapid testing and deployment life-cycles. In this paper, we propose P4Visor, a lightweight virtualization abstraction that provides testing primitives as a first-order citizen of the PDP ecosystem. P4Visor can efficiently support multiple PDP programs through a combination of compiler optimizations and program analysis-based algorithms. P4Visor’s algorithm improves over state-of-the-art techniques by significantly reducing the resource overheads associated with embedding numerous versions of a PDP program into hardware. To demonstrate the efficiency and viability of P4Visor, we implemented and evaluated P4Visor on both a software switch and an FPGA-based hardware switch using fourteen of different PDP programs. Our results demonstrate that P4Visor introduces minimal overheads and is one order of magnitude more efficient than existing PDPs primitives for concurrently supporting multiple programs.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1432-1447"},"PeriodicalIF":16.4,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44954565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FlowMan: QoS-Aware Dynamic Data Flow Management in Software-Defined Networks","authors":"A. Mondal, S. Misra","doi":"10.1109/JSAC.2020.2999682","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2999682","url":null,"abstract":"In this paper, we study the problem of data flow management in the presence of heterogeneous flows — elephant and mice flows — in software-defined networks (SDNs). Most of the researchers considered the homogeneous flows in SDN in the existing literature. The optimal data flow management in the presence of heterogeneous flows is NP-hard. Hence, we propose a game theory-based heterogeneous data flow management scheme, named FlowMan. In FlowMan, initially, we use a generalized Nash bargaining game to obtain a sub-optimal problem, which is NP-complete in nature. By solving it, we get the Pareto optimal solution for data-rate associated with each switch. Thereafter, we use a heuristic method to decide the flow-association with the switches, distributedly, which, in turn, helps to get a Pareto optimal solution. Extensive simulation results depict that FlowMan is capable of ensuring quality-of-service (QoS) for data flow management in the presence of heterogeneous flows. In particular, FlowMan is capable of reducing network delay by 77.8–98.7%, while ensuring 24.6–47.8% increase in network throughput, compared to the existing schemes such as FlowStat and CURE. Additionally, FlowMan ensures that per-flow delay is reduced by 27.7% with balanced load distribution among the SDN switches.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1366-1373"},"PeriodicalIF":16.4,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45151488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trident: Toward Distributed Reactive SDN Programming With Consistent Updates","authors":"K. Gao, Taishi Nojima, Haitao Yu, Y. Yang","doi":"10.1109/JSAC.2020.2999654","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2999654","url":null,"abstract":"Software-Defined Networking (SDN) enables more dynamic and fine-grained network control. In particular, network operators can route traffic not only based on packet header fields, but also higher-level parameters such as user settings, traffic characteristics, and application-layer information extracted by virtualized network functions such as DPI, firewall and authentication servers. Integrating these higher-level parameters into an SDN programming framework brings substantial benefits but is still missing in the SDN community. In this paper, we articulate the challenges and then propose Trident, a novel unified SDN programming framework. Trident extends algorithmic SDN programming with a new abstraction called <italic>stream attribute</italic>, which integrates meta parameters into the match-action programming paradigm. Further, Trident adopts the idea of <italic>reactive value</italic> from function reactive programming, eliminating the complexity of manually handling dynamicity. To effectively and efficiently realize these novel ideas, Trident introduces <italic>reactive table</italic> as the basic processing unit and develops a domain-specific distributed update protocol to maintain consistency during updates. Evaluations show that Trident puts very little overhead on integrating existing network management tools and network functions, and can handle up to <inline-formula> <tex-math notation=\"LaTeX\">$O(10^{5})$ </tex-math></inline-formula> routing requests per second with <inline-formula> <tex-math notation=\"LaTeX\">$O(100)$ </tex-math></inline-formula> milliseconds latency.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1322-1334"},"PeriodicalIF":16.4,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45277094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salma Matoussi, Ilhem Fajjari, Salvatore Costanzo, N. Aitsaadi, R. Langar
{"title":"5G RAN: Functional Split Orchestration Optimization","authors":"Salma Matoussi, Ilhem Fajjari, Salvatore Costanzo, N. Aitsaadi, R. Langar","doi":"10.1109/JSAC.2020.2999685","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2999685","url":null,"abstract":"5G RAN aims to evolve new technologies spanning the Cloud infrastructure, virtualization techniques and Software Defined Network capabilities. Advanced solutions are introduced to split the functions of the Radio Access Network (RAN) between centralized and distributed locations. Such paradigms improve RAN flexibility and reduce the infrastructure deployment cost without impacting the user quality of service. We propose a novel functional split orchestration scheme that aims at minimizing the RAN deployment cost, while considering the requirements of its processing network functions and the capabilities of the Cloud infrastructure. With a fine grained approach on user basis, we show that the proposed solution optimizes both processing and bandwidth resource usage, while minimizing the overall energy consumption compared to i) cell-centric, ii) distributed and iii) centralized Cloud-RAN approaches. Moreover, we evaluate the effectiveness of our proposal in a 5G experimental prototype, based on Open Air Interface (OAI). We show that our solution achieves good performance in terms of total deployment cost and resolution time.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1448-1463"},"PeriodicalIF":16.4,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47327244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mouhamad Dieye, Wael Jaafar, H. Elbiaze, R. Glitho
{"title":"Market Driven Multidomain Network Service Orchestration in 5G Networks","authors":"Mouhamad Dieye, Wael Jaafar, H. Elbiaze, R. Glitho","doi":"10.1109/JSAC.2020.2986692","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986692","url":null,"abstract":"The advent of a new breed of enhanced multimedia services has put network operators into a position where they must support innovative services while ensuring both end-to-end Quality of Service requirements and profitability. Recently, Network Function Virtualization (NFV) has been touted as a cost-effective underlying technology in 5G networks to efficiently provision novel services. These NFV-based services have been increasingly associated with multi-domain networks. However, several orchestration issues, linked to cross-domain interactions and emphasized by the heterogeneity of underlying technologies and administrative authorities, present an important challenge. In this paper, we tackle the cross-domain interaction issue by proposing an intelligent and profitable auction-based approach to allow inter-domains resource allocation.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1417-1431"},"PeriodicalIF":16.4,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986692","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47969730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"User-Centric Edge Sharing Mechanism in Software-Defined Ultra-Dense Networks","authors":"D. Wu, Junjie Yan, Honggang Wang, Ruyang Wang","doi":"10.1109/JSAC.2020.2986871","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986871","url":null,"abstract":"The emerging mobile edge computing (MEC) evolutionarily extends the cloud services to the network edge. In order to efficiently coordinate distributed edge resources, software defined networking (SDN) at the network edge has been explored to realize the integrated management of communication, computation, and cache (3C) resources. However, many research efforts, in software-defined edge networks, are mainly devoted to 1C or 2C resource sharing. Motivated by high service performance and user demands, we propose a user-centric edge resource sharing model for software-defined ultra-dense network (SD-UDN) where multiple MEC servers around small base stations (SBSs) can share their 3C resources through OpenFlow-enabled switches. In particular, the service models of MEC servers and users are formulated to optimize the service process by minimizing the service delay, which is NP-hard. To address this NP-hard issue, a service association model is constructed based on design structure matrix (DSM), and a simulated annealing algorithm is employed to further optimize the service association model for reducing time complexity and offering a nearoptimal solution. Compared with traditional 1C or 2C resource sharing, the proposed edge resource sharing model can guarantee lower service delay for users.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1531-1541"},"PeriodicalIF":16.4,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44104257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint Diversity and Redundancy for Resilient Service Chain Provisioning","authors":"Abdelhamid Alleg, T. Ahmed, M. Mosbah, R. Boutaba","doi":"10.1109/JSAC.2020.2986867","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986867","url":null,"abstract":"Achieving network resiliency in terms of availability, reliability and fault tolerance is a central concern for network designers and operators to achieve business continuity and increase productivity. It is particularly challenging in increasingly virtualized network environments where network services are exposed to both hardware (e.g., bare-metal servers, switches, links, etc.) and software (VNF instances) failures. This increased risk of failures can severely deteriorate the quality of the deployed services and even lead to complete service outages. In this context, deploying services in operational networks often exacerbates the availability problem and requires considering availability of hardware and software components both individually and collectively. A key challenge in this perspective is the additional resources needed to achieve partial or full recovery after failures. In this paper, we propose a joint selective diversity and tailored redundancy mechanism to provision resilient services in an NFV framework. Diversity splits a single VNF into a pool of “N” active instances called replicas while redundancy provides “P” standby ready-to-use instances called backups. Based on an enhanced N+P model, we propose a placement solution of Service Function Chains (SFC) modeled as a Mixed Integer Linear Program (MILP). The proposed solution is designed to meet a target SFC availability level and, at the same time, to reduce the inherent cost due to diversity (overhead) and redundancy (backup resources). We evaluate the efficiency of the proposed solution through numerically and experimentally. Results demonstrate that our solution, not only, improves service resiliency by avoiding complete service outages but can also overcome network resource fragmentation.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1490-1504"},"PeriodicalIF":16.4,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986867","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46500608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Link Failure Recovery Mechanism in Software Defined Networks","authors":"Shrinivas Petale, Jaisingh Thangaraj","doi":"10.1109/JSAC.2020.2986668","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986668","url":null,"abstract":"In traditional networks, the pre-routed packets are dropped during the link failure leading to a huge data loss. Survivability techniques such as protection and restoration are available to provide the solution before and after the link failure. But, the new flow entries that are to be added in the flow table increase the initial network demand leading to an increase in memory demand per switch. The saved data not only reduces the network speed but also demands of repeated processing of entries. In this paper, we propose a new scheme of Group Table based Rerouting (GTR) technique to find the response against single link failure through Fast Fail-over (FF) group table feature provided by OpenFlow. This scheme provides equal roles for both controllers and forwarding OpenFlow enabled switches. Here, the controller maintains a look-up table which is updated periodically according to the change in network structure. Also, it has to update the FF group table simultaneously corresponding to every active port of the switches. The controller relabels the packets and updates the flow entries on respective switches.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1285-1292"},"PeriodicalIF":16.4,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45088320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guangchao Wang, Sheng Zhou, Shan Zhang, Z. Niu, Xuemin Shen
{"title":"SFC-Based Service Provisioning for Reconfigurable Space-Air-Ground Integrated Networks","authors":"Guangchao Wang, Sheng Zhou, Shan Zhang, Z. Niu, Xuemin Shen","doi":"10.1109/JSAC.2020.2986851","DOIUrl":"https://doi.org/10.1109/JSAC.2020.2986851","url":null,"abstract":"Space-air-ground integrated networks (SAGIN) extend the capability of wireless networks and will be the essential building block for many advanced applications, like autonomous driving, earth monitoring, and etc. However, coordinating heterogeneous physical resources is very challenging in such a large-scale dynamic network. In this paper, we propose a reconfigurable service provisioning framework based on service function chaining (SFC) for SAGIN. In SFC, the network functions are virtualized and the service data needs to flow through specific network functions in a predefined sequence. The inherent issue is how to plan the service function chains over large-scale heterogeneous networks, subject to the resource limitations of both communication and computation. Specifically, we must jointly consider the virtual network functions (VNFs) embedding and service data routing. We formulate the SFC planning problem as an integer non-linear programming problem, which is NP-hard. Then, a heuristic greedy algorithm is proposed, which concentrates on leveraging different features of aerial and ground nodes and balancing the resource consumptions. Furthermore, a new metric, aggregation ratio (AR) is proposed to elaborate the communication-computation tradeoff. Extensive simulations shows that our proposed algorithm achieves near-optimal performance. We also find that the SAGIN significantly reduces the service blockage probability and improves the efficiency of resource utilization. Finally, a case study on multiple intersection traffic scheduling is provided to demonstrate the effectiveness of our proposed SFC-based service provisioning framework.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1478-1489"},"PeriodicalIF":16.4,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43763025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}