Hydrogen最新文献

筛选
英文 中文
On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation 论超纯氢分离薄膜装置的可扩展性
Hydrogen Pub Date : 2024-04-17 DOI: 10.3390/hydrogen5020010
Vincenzo Narcisi, Luca Farina, Alessia Santucci
{"title":"On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation","authors":"Vincenzo Narcisi, Luca Farina, Alessia Santucci","doi":"10.3390/hydrogen5020010","DOIUrl":"https://doi.org/10.3390/hydrogen5020010","url":null,"abstract":"Hydrogen permeation sparked a renewed interest in the second half of the 20th century due to the favorable features of this element as an energy factor. Furthermore, niche applications such as nuclear fusion gained attention for the highest selectivity ensured by self-supported dense metallic membranes, especially those consisting of Pd-based alloys. In this framework, the ENEA Frascati laboratories have decades of experience in the manufacturing, integration, and operation of Pd-Ag permeators. Most of the experimental investigations were performed on single-tube membranes, proving their performance under relevant operational conditions. Nowadays, once the applicability of this technology has been demonstrated, the scalability of the single-tube experience over medium- and large-scale units must be verified. To do this, ENEA Frascati laboratories have designed and constructed a multi-tube permeator, namely the Medium-Scaled Membrane Reactor (MeSMeR), focused on scalability assessment. In this work, the results obtained with the MeSMeR facility have been compared with previous experimental campaigns conducted on single-tube units, and the scalability of the permeation results has been proven. Moreover, post-test simulations have been performed based on single-tube finite element modeling, proving the scalability of the numerical outcomes and the possibility of using this tool for scale-up design procedures.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":" 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Metal Carbides on Hydrogen Embrittlement: A Density Functional Theory Study 金属碳化物对氢脆的影响:密度泛函理论研究
Hydrogen Pub Date : 2024-03-20 DOI: 10.3390/hydrogen5010009
Omar Faye, Jerzy A. Szpunar
{"title":"Effect of Metal Carbides on Hydrogen Embrittlement: A Density Functional Theory Study","authors":"Omar Faye, Jerzy A. Szpunar","doi":"10.3390/hydrogen5010009","DOIUrl":"https://doi.org/10.3390/hydrogen5010009","url":null,"abstract":"This study uses plane wave density functional theory (DFT) to investigate the effect of certain metal carbides (Niobium carbide, Vanadium carbide, Titanium carbide, and Manganese sulfide) on hydrogen embrittlement in pipeline steels. Our results predict that the interaction of hydrogen molecules with these metal carbides occurs in the long range with binding energy varying in the energy window [0.043 eV to 0.70 eV].In addition, our study shows the desorption of H2 molecules from these metal carbides in the chemisorptions. Since atomic state hydrogen interacts with NbC, VC, TiC, and MnS to cause embrittlement, we classified the strength of the hydrogen trapping as TiC + H > VC + H > NbC + H> MnS + H. In addition, our study reveals that the carbon site is a more favorable hydrogen-trapping site than the metal one.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"32 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140224985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Cr/Mn Addition in TiVNb on Hydrogen Sorption Properties: Thermodynamics and Phase Transition Study TiVNb 中添加 Cr/Mn 对吸氢特性的影响:热力学和相变研究
Hydrogen Pub Date : 2024-02-18 DOI: 10.3390/hydrogen5010008
A. Bouzidi, Erik Elkaim, Vivian Nassif, C. Zlotea
{"title":"Effect of Cr/Mn Addition in TiVNb on Hydrogen Sorption Properties: Thermodynamics and Phase Transition Study","authors":"A. Bouzidi, Erik Elkaim, Vivian Nassif, C. Zlotea","doi":"10.3390/hydrogen5010008","DOIUrl":"https://doi.org/10.3390/hydrogen5010008","url":null,"abstract":"High-entropy alloys (HEAs) are a promising class of materials that can grant remarkable functional performances for a large range of applications due to their highly tunable composition. Among these applications, recently, bcc HEAs capable of forming fcc hydrides have been proposed as high-capacity hydrogen storage materials with improved thermodynamics compared to classical metal hydrides. In this context, a single-phase bcc (TiVNb)0.90Cr0.05Mn0.05 HEA was prepared by arc melting to evaluate the effect of combined Cr/Mn addition in the ternary TiVNb. A thermodynamic destabilization of the fcc hydride phase was found in the HEA compared to the initial TiVNb. In situ neutron and synchrotron X-ray diffraction experiments put forward a fcc → bcc phase transition of the metallic subnetwork in the temperature range of 260–350 °C, whereas the H/D subnetwork underwent an order → disorder transition at 180 °C. The absorption/desorption cycling demonstrated very fast absorption kinetics at room temperature in less than 1 min with a remarkable total capacity (2.8 wt.%) without phase segregation. Therefore, the design strategy consisting of small additions of non-hydride-forming elements into refractory HEAs allows for materials with promising properties for solid-state hydrogen storage to be obtained.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Exploration of Safety Measures in Hydrogen Refueling Stations: Delving into Hydrogen Equipment and Technical Performance 探讨加氢站的安全措施:探究加氢设备和技术性能
Hydrogen Pub Date : 2024-02-17 DOI: 10.3390/hydrogen5010007
M. Genovese, David I. Blekhman, P. Fragiacomo
{"title":"An Exploration of Safety Measures in Hydrogen Refueling Stations: Delving into Hydrogen Equipment and Technical Performance","authors":"M. Genovese, David I. Blekhman, P. Fragiacomo","doi":"10.3390/hydrogen5010007","DOIUrl":"https://doi.org/10.3390/hydrogen5010007","url":null,"abstract":"The present paper offers a thorough examination of the safety measures enforced at hydrogen filling stations, emphasizing their crucial significance in the wider endeavor to advocate for hydrogen as a sustainable and reliable substitute for conventional fuels. The analysis reveals a wide range of crucial safety aspects in hydrogen refueling stations, including regulated hydrogen dispensing, leak detection, accurate hydrogen flow measurement, emergency shutdown systems, fire-suppression mechanisms, hydrogen distribution and pressure management, and appropriate hydrogen storage and cooling for secure refueling operations. The paper therefore explores several aspects, including the sophisticated architecture of hydrogen dispensers, reliable leak-detection systems, emergency shut-off mechanisms, and the implementation of fire-suppression tactics. Furthermore, it emphasizes that the safety and effectiveness of hydrogen filling stations are closely connected to the accuracy in the creation and upkeep of hydrogen dispensers. It highlights the need for materials and systems that can endure severe circumstances of elevated pressure and temperature while maintaining safety. The use of sophisticated leak-detection technology is crucial for rapidly detecting and reducing possible threats, therefore improving the overall safety of these facilities. Moreover, the research elucidates the complexities of emergency shut-off systems and fire-suppression tactics. These components are crucial not just for promptly managing hazards, but also for maintaining the station’s structural soundness in unanticipated circumstances. In addition, the study provides observations about recent technical progress in the industry. These advances effectively tackle current safety obstacles and provide the foundation for future breakthroughs in hydrogen fueling infrastructure. The integration of cutting-edge technology and materials, together with the development of upgraded safety measures, suggests a positive trajectory towards improved efficiency, dependability, and safety in hydrogen refueling stations.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"373 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140453537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel 水泥脱碳技术的技术经济分析:富氧与氢燃料
Hydrogen Pub Date : 2024-02-10 DOI: 10.3390/hydrogen5010005
Bruno C. Domingues, Diogo M. F. Santos, Margarida Mateus, Duarte M. Cecílio
{"title":"Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel","authors":"Bruno C. Domingues, Diogo M. F. Santos, Margarida Mateus, Duarte M. Cecílio","doi":"10.3390/hydrogen5010005","DOIUrl":"https://doi.org/10.3390/hydrogen5010005","url":null,"abstract":"The Paris Agreement aims to limit global warming, and one of the most polluting sectors is heavy industry, where cement production is a significant contributor. This work briefly explores some alternatives, recycling, reducing clinker content, waste heat recovery, and carbon capture, discussing their advantages and drawbacks. Then, it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.%, which could improve clinker production by 7%, and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction, considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil, an international company for cement and building materials, to determine the required scale of the oxygen and hydrogen production, respectively, and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However, hydrogen production at this scale is not currently economically viable.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":" 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139786682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen from Waste Gasification 废物气化制氢
Hydrogen Pub Date : 2024-02-10 DOI: 10.3390/hydrogen5010006
Reinhard Rauch, Y. Kiros, K. Engvall, E. Kantarelis, Paulo Brito, C. Nobre, S. M. Santos, Philipp A. Graefe
{"title":"Hydrogen from Waste Gasification","authors":"Reinhard Rauch, Y. Kiros, K. Engvall, E. Kantarelis, Paulo Brito, C. Nobre, S. M. Santos, Philipp A. Graefe","doi":"10.3390/hydrogen5010006","DOIUrl":"https://doi.org/10.3390/hydrogen5010006","url":null,"abstract":"Hydrogen is a versatile energy vector for a plethora of applications; nevertheless, its production from waste/residues is often overlooked. Gasification and subsequent conversion of the raw synthesis gas to hydrogen are an attractive alternative to produce renewable hydrogen. In this paper, recent developments in R&D on waste gasification (municipal solid waste, tires, plastic waste) are summarised, and an overview about suitable gasification processes is given. A literature survey indicated that a broad span of hydrogen relates to productivity depending on the feedstock, ranging from 15 to 300 g H2/kg of feedstock. Suitable gas treatment (upgrading and separation) is also covered, presenting both direct and indirect (chemical looping) concepts. Hydrogen production via gasification offers a high productivity potential. However, regulations, like frame conditions or subsidies, are necessary to bring the technology into the market.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139786750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel 水泥脱碳技术的技术经济分析:富氧与氢燃料
Hydrogen Pub Date : 2024-02-10 DOI: 10.3390/hydrogen5010005
Bruno C. Domingues, Diogo M. F. Santos, Margarida Mateus, Duarte M. Cecílio
{"title":"Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel","authors":"Bruno C. Domingues, Diogo M. F. Santos, Margarida Mateus, Duarte M. Cecílio","doi":"10.3390/hydrogen5010005","DOIUrl":"https://doi.org/10.3390/hydrogen5010005","url":null,"abstract":"The Paris Agreement aims to limit global warming, and one of the most polluting sectors is heavy industry, where cement production is a significant contributor. This work briefly explores some alternatives, recycling, reducing clinker content, waste heat recovery, and carbon capture, discussing their advantages and drawbacks. Then, it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.%, which could improve clinker production by 7%, and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction, considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil, an international company for cement and building materials, to determine the required scale of the oxygen and hydrogen production, respectively, and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However, hydrogen production at this scale is not currently economically viable.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"47 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen from Waste Gasification 废物气化制氢
Hydrogen Pub Date : 2024-02-10 DOI: 10.3390/hydrogen5010006
Reinhard Rauch, Y. Kiros, K. Engvall, E. Kantarelis, Paulo Brito, C. Nobre, S. M. Santos, Philipp A. Graefe
{"title":"Hydrogen from Waste Gasification","authors":"Reinhard Rauch, Y. Kiros, K. Engvall, E. Kantarelis, Paulo Brito, C. Nobre, S. M. Santos, Philipp A. Graefe","doi":"10.3390/hydrogen5010006","DOIUrl":"https://doi.org/10.3390/hydrogen5010006","url":null,"abstract":"Hydrogen is a versatile energy vector for a plethora of applications; nevertheless, its production from waste/residues is often overlooked. Gasification and subsequent conversion of the raw synthesis gas to hydrogen are an attractive alternative to produce renewable hydrogen. In this paper, recent developments in R&D on waste gasification (municipal solid waste, tires, plastic waste) are summarised, and an overview about suitable gasification processes is given. A literature survey indicated that a broad span of hydrogen relates to productivity depending on the feedstock, ranging from 15 to 300 g H2/kg of feedstock. Suitable gas treatment (upgrading and separation) is also covered, presenting both direct and indirect (chemical looping) concepts. Hydrogen production via gasification offers a high productivity potential. However, regulations, like frame conditions or subsidies, are necessary to bring the technology into the market.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"31 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Use of Copper-Based Delafossite to Improve Hydrogen Production Performance: A Review 使用铜基特拉弗斯提高制氢性能:综述
Hydrogen Pub Date : 2024-01-30 DOI: 10.3390/hydrogen5010004
Hasnae Chfii, Amal Bouich, B. M. Soucase
{"title":"The Use of Copper-Based Delafossite to Improve Hydrogen Production Performance: A Review","authors":"Hasnae Chfii, Amal Bouich, B. M. Soucase","doi":"10.3390/hydrogen5010004","DOIUrl":"https://doi.org/10.3390/hydrogen5010004","url":null,"abstract":"This review paper reports on the use of Delafossite as a layer between perovskite-based solar cells to improve hydrogen production efficiency and make the process easier. The investigation delves into the possible breakthroughs in sustainable energy generation by investigating the synergistic interplay between Delafossite and solar technology. This investigation covers copper-based Delafossite material’s properties, influence on cell performance, and function in the electrolysis process for hydrogen production. Some reports investigate the synthesis and characterizations of delafossite materials and try to improve their performance using photo electrochemistry. This work sheds light on the exciting prospects of Delafossite integration using experimental and analytical methodologies.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"258 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140485619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation Thermodynamics of Ti16V60Cr24−xFex Alloys (x = 0, 4, 8, 12, 16, 20, 24) Ti16V60Cr24-xFex 合金的氢化热力学(x = 0、4、8、12、16、20、24)
Hydrogen Pub Date : 2024-01-26 DOI: 10.3390/hydrogen5010003
Francia Ravalison, J. Huot
{"title":"Hydrogenation Thermodynamics of Ti16V60Cr24−xFex Alloys (x = 0, 4, 8, 12, 16, 20, 24)","authors":"Francia Ravalison, J. Huot","doi":"10.3390/hydrogen5010003","DOIUrl":"https://doi.org/10.3390/hydrogen5010003","url":null,"abstract":"The effect of the partial substitution of Cr with Fe on the thermodynamic parameters of vanadium-rich Ti16V60Cr24-xFex alloys (x = 0, 4, 8, 12, 16, 20, 24) was investigated. For each composition, a pressure–concentration isotherm (PCI) was registered at 298, 308, and 323 K. The PCI curves revealed a reduction in plateau pressure and a decrease in desorbed hydrogen capacity with an increasing amount of Fe. For all alloys, about 50% or less of the initial hydrogen capacity was desorbed for all chosen temperatures. Entropy (ΔS) and enthalpy (ΔH) values were deducted from corresponding Van’t Hoff plots of the PCI curves: the entropy values ranged from −150 to −57 J/K·mol H2, while the enthalpy values ranged from −44 to −21 kJ/mol H2. They both decreased with an increasing amount of Fe. Plotting ΔS as function of ΔH showed a linear variation that seems to indicate an enthalpy–entropy compensation. Moreover, a quality factor analysis demonstrated that the present relationship between entropy and enthalpy is not of a statistical origin at the 99% confidence level.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"122 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140493729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信