IACR Cryptol. ePrint Arch.最新文献

筛选
英文 中文
Dlog is Practically as Hard (or Easy) as DH - Solving Dlogs via DH Oracles on EC Standards Dlog实际上和DH一样难(或容易)——在EC标准上通过DH oracle解决Dlog
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.46586/tches.v2023.i4.146-166
Alexander May, C. Schneider
{"title":"Dlog is Practically as Hard (or Easy) as DH - Solving Dlogs via DH Oracles on EC Standards","authors":"Alexander May, C. Schneider","doi":"10.46586/tches.v2023.i4.146-166","DOIUrl":"https://doi.org/10.46586/tches.v2023.i4.146-166","url":null,"abstract":"Assume that we have a group G of known order q, in which we want to solve discrete logarithms (dlogs). In 1994, Maurer showed how to compute dlogs in G in poly time given a Diffie-Hellman (DH) oracle in G, and an auxiliary elliptic curve ˆÊ (Fq) of smooth order. The problem of Maurer’s reduction of solving dlogs via DH oracles is that no efficient algorithm for constructing such a smooth auxiliary curve is known. Thus, the implications of Maurer’s approach to real-world applications remained widely unclear.In this work, we explicitly construct smooth auxiliary curves for 13 commonly used, standardized elliptic curves of bit-sizes in the range [204, 256], including e.g., NIST P-256, Curve25519, SM2 and GOST R34.10. For all these curves we construct a corresponding cyclic auxiliary curve ˆÊ(Fq), whose order is 39-bit smooth, i.e., its largest factor is of bit-length at most 39 bits.This in turn allows us to compute for all divisors of the order of ˆÊ(Fq) exhaustively a codebook for all discrete logarithms. As a consequence, dlogs on ˆÊ(Fq) can efficiently be computed in a matter of seconds. Our resulting codebook sizes for each auxiliary curve are less than 29 TByte individually, and fit on our hard disk.We also construct auxiliary curves for NIST P-384 and NIST P-521 with a 65-bit and 110-bit smooth order.Further, we provide an efficient implementation of Maurer’s reduction from the dlog computation in G with order q to the dlog computation on its auxiliary curve ˆÊ (Fq). Let us provide a flavor of our results, e.g., when G is the NIST P-256 group, the results for other curves are similar. With the help of our codebook for the auxiliary curve Ê(Fq), and less than 24,000 calls to a DH oracle in G (that we simulate), we can solve discrete logarithms on NIST P-256 in around 30 secs.From a security perspective, our results show that for current elliptic curve standards< the difficulty of solving DH is practically tightly related to the difficulty of computing dlogs. Namely, unless dlogs are easy to compute on these curves G, we provide a very concrete security guarantee that DH in G must also be hard. From a cryptanalytic perspective, our results show a way to efficiently solve discrete logarithms in the presence of a DH oracle.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"1 1","pages":"539"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73438212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon Echoes: Non-Invasive Trojan and Tamper Detection using Frequency-Selective Impedance Analysis 硅回声:非侵入式木马和篡改检测使用频率选择阻抗分析
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.46586/tches.v2023.i4.238-261
Tahoura Mosavirik, Saleh Khalaj Monfared, Maryam Saadat-Safa, Shahin Tajik
{"title":"Silicon Echoes: Non-Invasive Trojan and Tamper Detection using Frequency-Selective Impedance Analysis","authors":"Tahoura Mosavirik, Saleh Khalaj Monfared, Maryam Saadat-Safa, Shahin Tajik","doi":"10.46586/tches.v2023.i4.238-261","DOIUrl":"https://doi.org/10.46586/tches.v2023.i4.238-261","url":null,"abstract":"The threat of chip-level tampering and its detection has been widely researched. Hardware Trojan insertions are prominent examples of such tamper events. Altering the placement and routing of a design or removing a part of a circuit for side-channel leakage/fault sensitivity amplification are other instances of such attacks. While semi- and fully-invasive physical verification methods can confidently detect such stealthy tamper events, they are costly, time-consuming, and destructive. On the other hand, virtually all proposed non-invasive side-channel methods suffer from noise and, therefore, have low confidence. Moreover, they require activating the tampered part of the circuit (e.g., the Trojan trigger) to compare and detect the modifications. In this work, we introduce a non-invasive post-silicon tamper detection technique applicable to different classes of tamper events at the chip level without requiring the activation of the malicious circuit. Our method relies on the fact that physical modifications (regardless of their physical, activation, or action characteristics) alter the impedance of the chip. Hence, characterizing the impedance can lead to the detection of the tamper events. To sense the changes in the impedance, we deploy known RF tools, namely, scattering parameters, in which we inject sine wave signals with high frequencies to the power distribution network (PDN) of the system and measure the “echo” of the signal. The reflected signals in various frequency bands reveal different tamper events based on their impact size on the die. To validate our claims, we performed measurements on several proof-ofconcept tampered hardware implementations realized on FPGAs manufactured with a 28 nm technology. We further show that deploying the Dynamic Time Warping (DTW) distance can distinguish between tamper events and noise resulting from manufacturing process variation of different chips/boards. Based on the acquired results, we demonstrate that stealthy hardware Trojans, as well as sophisticated modifications of P&R, can be detected.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"64 1","pages":"75"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76114050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accountable Safety Implies Finality 负责任的安全意味着最终的结果
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.48550/arXiv.2308.16902
Joachim Neu, Ertem Nusret Tas, DavidN C. Tse
{"title":"Accountable Safety Implies Finality","authors":"Joachim Neu, Ertem Nusret Tas, DavidN C. Tse","doi":"10.48550/arXiv.2308.16902","DOIUrl":"https://doi.org/10.48550/arXiv.2308.16902","url":null,"abstract":"Motivated by proof-of-stake (PoS) blockchains such as Ethereum, two key desiderata have recently been studied for Byzantine-fault tolerant (BFT) state-machine replication (SMR) consensus protocols: Finality means that the protocol retains consistency, as long as less than a certain fraction of validators are malicious, even in partially-synchronous environments that allow for temporary violations of assumed network delay bounds. Accountable safety means that in any case of inconsistency, a certain fraction of validators can be identified to have provably violated the protocol. Earlier works have developed impossibility results and protocol constructions for these properties separately. We show that accountable safety implies finality, thereby unifying earlier results.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"280 1","pages":"1301"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83083995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Provable White-Box Security in the Strong Incompressibility Model 强不可压缩模型中可证明的白盒安全性
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.46586/tches.v2023.i4.167-187
Estuardo Alpirez Bock, C. Brzuska, Russell W. F. Lai
{"title":"On Provable White-Box Security in the Strong Incompressibility Model","authors":"Estuardo Alpirez Bock, C. Brzuska, Russell W. F. Lai","doi":"10.46586/tches.v2023.i4.167-187","DOIUrl":"https://doi.org/10.46586/tches.v2023.i4.167-187","url":null,"abstract":"Incompressibility is a popular security notion for white-box cryptography and captures that a large encryption program cannot be compressed without losing functionality. Fouque, Karpman, Kirchner and Minaud (FKKM) defined strong incompressibility, where a compressed program should not even help to distinguish encryptions of two messages of equal length. Equivalently, the notion can be phrased as indistinguishability under chosen-plaintext attacks and key-leakage (LK-IND-CPA), where the leakage rate is high.In this paper, we show that LK-IND-CPA security with superlogarithmic-length leakage, and thus strong incompressibility, cannot be proven under standard (i.e. single-stage) assumptions, if the encryption scheme is key-fixing, i.e. a polynomial number of message-ciphertext pairs uniquely determine the key with high probability. Our impossibility result refutes a claim by FKKM that their big-key generation mechanism achieves strong incompressibility when combined with any PRG or any conventional encryption scheme, since the claim is not true for encryption schemes which are key-fixing (or for PRGs which are injective). In particular, we prove that the cipher block chaining (CBC) block cipher mode is key-fixing when modelling the cipher as a truly random permutation for each key. Subsequent to and inspired by our work, FKKM prove that their original big-key generation mechanism can be combined with a random oracle into an LK-IND-CPA-secure encryption scheme, circumventing the impossibility result by the use of an idealised model.Along the way, our work also helps clarifying the relations between incompressible white-box cryptography, big-key symmetric encryption, and general leakage resilient cryptography, and their limitations.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"37 1","pages":"1007"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87174083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium 从MLWE到RLWE:随机确定性二锂的微分故障攻击
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.46586/tches.v2023.i4.262-286
Mohamed ElGhamrawy, M. Azouaoui, Olivier Bronchain, Joost Renes, Tobias Schneider, Markus Schönauer, Okan Seker, C. V. Vredendaal
{"title":"From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium","authors":"Mohamed ElGhamrawy, M. Azouaoui, Olivier Bronchain, Joost Renes, Tobias Schneider, Markus Schönauer, Okan Seker, C. V. Vredendaal","doi":"10.46586/tches.v2023.i4.262-286","DOIUrl":"https://doi.org/10.46586/tches.v2023.i4.262-286","url":null,"abstract":"The post-quantum digital signature scheme CRYSTALS-Dilithium has been recently selected by the NIST for standardization. Implementing CRYSTALSDilithium, and other post-quantum cryptography schemes, on embedded devices raises a new set of challenges, including ones related to performance in terms of speed and memory requirements, but also related to side-channel and fault injection attacks security. In this work, we investigated the latter and describe a differential fault attack on the randomized and deterministic versions of CRYSTALS-Dilithium. Notably, the attack requires a few instructions skips and is able to reduce the MLWE problem that Dilithium is based on to a smaller RLWE problem which can be practically solved with lattice reduction techniques. Accordingly, we demonstrated key recoveries using hints extracted on the secret keys from the same faulted signatures using the LWE with side-information framework introduced by Dachman-Soled et al. at CRYPTO’20. As a final contribution, we proposed algorithmic countermeasures against this attack and in particular showed that the second one can be parameterized to only induce a negligible overhead over the signature generation.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"60 1","pages":"1074"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84654431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key Recovery from Decryption Errors 信念传播满足格约简:解密错误后容错密钥恢复的安全性估计
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-31 DOI: 10.46586/tches.v2023.i4.287-317
Julius Hermelink, Erik Mårtensson, Simona Samardjiska, P. Pessl, G. Rodosek
{"title":"Belief Propagation Meets Lattice Reduction: Security Estimates for Error-Tolerant Key Recovery from Decryption Errors","authors":"Julius Hermelink, Erik Mårtensson, Simona Samardjiska, P. Pessl, G. Rodosek","doi":"10.46586/tches.v2023.i4.287-317","DOIUrl":"https://doi.org/10.46586/tches.v2023.i4.287-317","url":null,"abstract":"In LWE-based KEMs, observed decryption errors leak information about the secret key in the form of equations or inequalities. Several practical fault attacks have already exploited such leakage by either directly applying a fault or enabling a chosen-ciphertext attack using a fault. When the leaked information is in the form of inequalities, the recovery of the secret key is not trivial. Recent methods use either statistical or algebraic methods (but not both), with some being able to handle incorrect information. Having in mind that integration of the side-channel information is a crucial part of several classes of implementation attacks on LWEbased schemes, it is an important question whether statistically processed information can be successfully integrated in lattice reduction algorithms.We answer this question positively by proposing an error-tolerant combination of statistical and algebraic methods that make use of the advantages of both approaches. The combination enables us to improve upon existing methods – we use both fewer inequalities and are more resistant to errors. We further provide precise security estimates based on the number of available inequalities.Our recovery method applies to several types of implementation attacks in which decryption errors are used in a chosen-ciphertext attack. We practically demonstrate the improved performance of our approach in a key-recovery attack against Kyber with fault-induced decryption errors.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"34 1","pages":"98"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90112086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Applications of Finite non-Abelian Simple Groups to Cryptography in the Quantum Era 有限非阿贝尔单群在量子时代密码学中的应用
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-28 DOI: 10.48550/arXiv.2308.14725
María Isabel González Vasco, Delaram Kahrobaei, E. McKemmie
{"title":"Applications of Finite non-Abelian Simple Groups to Cryptography in the Quantum Era","authors":"María Isabel González Vasco, Delaram Kahrobaei, E. McKemmie","doi":"10.48550/arXiv.2308.14725","DOIUrl":"https://doi.org/10.48550/arXiv.2308.14725","url":null,"abstract":"The theory of finite simple groups is a (rather unexplored) area likely to provide interesting computational problems and modelling tools useful in a cryptographic context. In this note, we review some applications of finite non-abelian simple groups to cryptography and discuss different scenarios in which this theory is clearly central, providing the relevant definitions to make the material accessible to both cryptographers and group theorists, in the hope of stimulating further interaction between these two (non-disjoint) communities. In particular, we look at constructions based on various group-theoretic factorization problems, review group theoretical hash functions, and discuss fully homomorphic encryption using simple groups. The Hidden Subgroup Problem is also briefly discussed in this context.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"1 1","pages":"1293"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74850782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Implementation and Analysis of DEFAULT DEFAULT的量子实现与分析
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-23 DOI: 10.1007/s12095-023-00666-y
K. Jang, Anubhab Baksi, J. Breier, Hwajeong Seo, A. Chattopadhyay
{"title":"Quantum Implementation and Analysis of DEFAULT","authors":"K. Jang, Anubhab Baksi, J. Breier, Hwajeong Seo, A. Chattopadhyay","doi":"10.1007/s12095-023-00666-y","DOIUrl":"https://doi.org/10.1007/s12095-023-00666-y","url":null,"abstract":"","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"12 1","pages":"647"},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74464484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Quantum impossible differential attacks: Applications to AES and SKINNY 量子不可能差分攻击:AES和SKINNY的应用
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-17 DOI: 10.1007/s10623-023-01280-y
Nicolas David, M. Naya-Plasencia, A. Schrottenloher
{"title":"Quantum impossible differential attacks: Applications to AES and SKINNY","authors":"Nicolas David, M. Naya-Plasencia, A. Schrottenloher","doi":"10.1007/s10623-023-01280-y","DOIUrl":"https://doi.org/10.1007/s10623-023-01280-y","url":null,"abstract":"","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"46 10 1","pages":"754"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82745603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Privacy-preserving Central Bank Ledger for Central Bank Digital Currency 用于中央银行数字货币的隐私保护中央银行账本
IACR Cryptol. ePrint Arch. Pub Date : 2023-08-16 DOI: 10.48550/arXiv.2311.16105
Wang Mong Tikvah Chan
{"title":"A Privacy-preserving Central Bank Ledger for Central Bank Digital Currency","authors":"Wang Mong Tikvah Chan","doi":"10.48550/arXiv.2311.16105","DOIUrl":"https://doi.org/10.48550/arXiv.2311.16105","url":null,"abstract":"Retail central bank digital currency (rCBDC) is seen as a key upgrade of the monetary system in the 21st century. However, privacy concerns are the main impediment to rCBDC's development and roll-out. On the one hand, the rights of people to keep their transactions private should be protected, including against central bank surveillance. On the other hand, the central bank needs to ensure that no over-issuance of money or other frauds occur, demanding a certain form of knowledge of rCBDC transactions to safeguard against malicious users. This work focuses on rCBDC architectures based on the unspent transaction output (UTXO) data model and tackles the research problem of preserving a sufficient degree of privacy for UTXO transaction records while allowing the central bank to verify their correctness. User privacy is not adequately addressed in the UTXO-based rCBDC architectures. Using evolving public keys as pseudonyms to hide the real identities of users only solves the privacy issue partially. Some information could still be leaked out. This work investigates techniques to address the shortcomings of the pseudonym approach. First, a Pedersen commitment scheme is applied to hide the transaction values of a UTXO transaction while allowing the central bank to verify that no over-issuance of rCBDC has occurred in the transaction.This work uses a Schnorr signature to prove no over-issuance of money, which reduces overheads and enables a non-interactive proof. Then, Coinjoin is applied to aggregate UTXO transactions from different users into one larger UTXO transaction to obfuscate the payer-payee relationship while preserving the correctness of the amount of money flow. This work applies k-anonymity to analyse the privacy guarantee of Coinjoin. By modelling the transaction traffic by a Poisson process, the trade-off between anonymity and transaction confirmation time of Coinjoin is analysed.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"40 1","pages":"1496"},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139350365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信