Advanced Numerical Methods for Differential Equations最新文献

筛选
英文 中文
Notorious Boundary Value Problems: Singularly Perturbed Differential Equations and Their Numerical Treatment 恶名边值问题:奇摄动微分方程及其数值处理
Advanced Numerical Methods for Differential Equations Pub Date : 2021-07-29 DOI: 10.1201/9781003097938-5
Naresh M. Chadha, Sunita Kumawat
{"title":"Notorious Boundary Value Problems: Singularly Perturbed Differential Equations and Their Numerical Treatment","authors":"Naresh M. Chadha, Sunita Kumawat","doi":"10.1201/9781003097938-5","DOIUrl":"https://doi.org/10.1201/9781003097938-5","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133279739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying on the Complex and Mixed Dark-Bright Travelling Wave Solutions of the Generalized KP-BBM Equation 广义KP-BBM方程的复和混合暗-明行波解研究
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-2
H. Baskonus, Ajay Kumar, M. S. Rawat, Bilgin Şenel, Gulnur Yel, Mine Şenel
{"title":"Studying on the Complex and Mixed Dark-Bright Travelling Wave Solutions of the Generalized KP-BBM Equation","authors":"H. Baskonus, Ajay Kumar, M. S. Rawat, Bilgin Şenel, Gulnur Yel, Mine Şenel","doi":"10.1201/9781003097938-2","DOIUrl":"https://doi.org/10.1201/9781003097938-2","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117049995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abundant Computational and Numerical Solutions of the Fractional Quantum Version of the Relativistic Energy-Momentum Relation 相对论能量-动量关系分数量子版本的大量计算和数值解
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-3
M. Khater, R. Attia, S. Owyed, A. Abdel‐Aty
{"title":"Abundant Computational and Numerical Solutions of the Fractional Quantum Version of the Relativistic Energy-Momentum Relation","authors":"M. Khater, R. Attia, S. Owyed, A. Abdel‐Aty","doi":"10.1201/9781003097938-3","DOIUrl":"https://doi.org/10.1201/9781003097938-3","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123602201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Stability and Convergence Analysis of Numerical Scheme for the Generalized Fractional Diffusion-Reaction Equation 广义分数阶扩散-反应方程数值格式的稳定性和收敛性分析
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-1
N. Sene
{"title":"Stability and Convergence Analysis of Numerical Scheme for the Generalized Fractional Diffusion-Reaction Equation","authors":"N. Sene","doi":"10.1201/9781003097938-1","DOIUrl":"https://doi.org/10.1201/9781003097938-1","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115490242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on Non-Standard Finite Difference (NSFD) Schemes for Solving Linear and Non-linear Differential Equations 求解线性和非线性微分方程的非标准有限差分格式研究进展
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-6
K. Sharma, S. Swami, V. Joshi, S. Bhardwaj
{"title":"Review on Non-Standard Finite Difference (NSFD) Schemes for Solving Linear and Non-linear Differential Equations","authors":"K. Sharma, S. Swami, V. Joshi, S. Bhardwaj","doi":"10.1201/9781003097938-6","DOIUrl":"https://doi.org/10.1201/9781003097938-6","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128470454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solutions for Nonlinear Fractional Diffusion Equations with Reaction Terms 具有反应项的非线性分数扩散方程的解
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-7
G. L. Guardia, J. Chagas, M. Lenzi, E. Lenzi
{"title":"Solutions for Nonlinear Fractional Diffusion Equations with Reaction Terms","authors":"G. L. Guardia, J. Chagas, M. Lenzi, E. Lenzi","doi":"10.1201/9781003097938-7","DOIUrl":"https://doi.org/10.1201/9781003097938-7","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130549603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superabundant Explicit Wave and Numerical Solutions of the Fractional Isotropic Extension Model of the KdV Model KdV模型分数阶各向同性扩展模型的过丰显波解及数值解
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-10
M. Khater, R. Attia
{"title":"Superabundant Explicit Wave and Numerical Solutions of the Fractional Isotropic Extension Model of the KdV Model","authors":"M. Khater, R. Attia","doi":"10.1201/9781003097938-10","DOIUrl":"https://doi.org/10.1201/9781003097938-10","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"211 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124741856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fractional Derivative Operator on Quarantine and Isolation Principle for COVID-19 COVID-19检疫隔离原理的分数阶导数算子
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-9
Albert Shikongo, Samuel Megameno Nuugulu, D. Elago, A. Salom, K. M. Owolabi
{"title":"Fractional Derivative Operator on Quarantine and Isolation Principle for COVID-19","authors":"Albert Shikongo, Samuel Megameno Nuugulu, D. Elago, A. Salom, K. M. Owolabi","doi":"10.1201/9781003097938-9","DOIUrl":"https://doi.org/10.1201/9781003097938-9","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121853246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Modified Computational Scheme and Convergence Analysis for Fractional Order Hepatitis E Virus Model 戊型肝炎病毒分数阶模型的改进计算格式及收敛性分析
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-11
V. Dubey, Devendra Kumar, S. Dubey
{"title":"A Modified Computational Scheme and Convergence Analysis for Fractional Order Hepatitis E Virus Model","authors":"V. Dubey, Devendra Kumar, S. Dubey","doi":"10.1201/9781003097938-11","DOIUrl":"https://doi.org/10.1201/9781003097938-11","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121369276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Convergence of Some High-Order Iterative Methods with Applications to Differential Equations 几种高阶迭代方法的收敛性及其在微分方程中的应用
Advanced Numerical Methods for Differential Equations Pub Date : 2021-06-18 DOI: 10.1201/9781003097938-8
I. K. Argyros, M. Argyros, Á.A. Magreíñn, J. A. Sicilia, I. Sarria
{"title":"Convergence of Some High-Order Iterative Methods with Applications to Differential Equations","authors":"I. K. Argyros, M. Argyros, Á.A. Magreíñn, J. A. Sicilia, I. Sarria","doi":"10.1201/9781003097938-8","DOIUrl":"https://doi.org/10.1201/9781003097938-8","url":null,"abstract":"","PeriodicalId":131229,"journal":{"name":"Advanced Numerical Methods for Differential Equations","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122221671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信