2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)最新文献

筛选
英文 中文
Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence Co-Ex:一种可靠的人-机器人共存的扭矩可控下体外骨骼
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779407
M. C. Yildirim, Ahmet Talha Kansizoglu, S. Emre, M. Derman, Sinan Coruk, A. Soliman, P. Şendur, B. Ugurlu
{"title":"Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence","authors":"M. C. Yildirim, Ahmet Talha Kansizoglu, S. Emre, M. Derman, Sinan Coruk, A. Soliman, P. Şendur, B. Ugurlu","doi":"10.1109/ICORR.2019.8779407","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779407","url":null,"abstract":"In this paper, we present our research study concerning the design and development of an exoskeleton that aims to provide 3D walking support with minimum number of actuators. Following a prior simulation study, the joint configuration was primarily determined. In order for the exoskeleton to possess advanced characteristics, the following design criteria were investigated: i) all the actuators (hip/knee/ankle) were deployed around the waist area to decrease leg weight and improve wearability, ii) custom-built series elastic actuators were used to power system for high fidelity torque-controllability, iii) 3D walking support is potentially enabled with reduced power requirements. As a result, we built the first actual prototype to experimentally verify the aforementioned design specifications. Furthermore, the preliminary torque control experiments indicated the viability of torque control.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133893477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Immediate Effects of Force Feedback and Plantar Somatosensory Stimuli on Inter-limb Coordination During Perturbed Walking 力反馈和足底体感刺激对障碍性行走时肢体间协调的直接影响
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779565
Yufeng Zhang, Karen J. Nolan, D. Zanotto
{"title":"Immediate Effects of Force Feedback and Plantar Somatosensory Stimuli on Inter-limb Coordination During Perturbed Walking","authors":"Yufeng Zhang, Karen J. Nolan, D. Zanotto","doi":"10.1109/ICORR.2019.8779565","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779565","url":null,"abstract":"Single-sided motor weakness, also known as hemiparesis, is the most prevalent gait impairment among stroke survivors, which often results in gait asymmetry. Studies on robot-assisted gait training (RAGT) have shown positive effects of force feedback on spatial symmetry; somatosensory stimulation is thought to facilitate recovery of temporal symmetry. Despite the known importance of sensorimotor integration for motor recovery, interventions that incorporate RAGT and somatosensory stimuli have been largely overlooked so far. In this paper, we explore how gait symmetry can be restored in healthy subjects following unilateral foot perturbations, using adaptive assistive forces and plantar vibrotactile stimuli provided by a bilateral powered ankle-foot orthosis. Results suggest that combined force feedback and vibrotactile stimuli may be more effective than force feedback alone in reducing spatial asymmetry. Further, force feedback did not produce significant improvements in temporal symmetry, unlike the combined modality. We discuss possible implications of these preliminary findings for future training paradigms for RAGT.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133422934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Method for Muscle Tone Monitoring During Robot-Assisted Therapy of Hand Function: A Proof of Concept 机器人辅助手部功能治疗中肌张力监测方法:概念验证
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779454
Raffaele Ranzani, Federica Viggiano, Bernadette Engelbrecht, J. Held, O. Lambercy, R. Gassert
{"title":"Method for Muscle Tone Monitoring During Robot-Assisted Therapy of Hand Function: A Proof of Concept","authors":"Raffaele Ranzani, Federica Viggiano, Bernadette Engelbrecht, J. Held, O. Lambercy, R. Gassert","doi":"10.1109/ICORR.2019.8779454","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779454","url":null,"abstract":"Robot-assisted rehabilitation of hand function is becoming an established approach to complement conventional therapy after stroke, particularly in view of its possible unsupervised use to promote an increase in therapy dose. Given their intensive therapy regime, robots may promote a temporary increase in hand muscle tone and spasticity, which may cause pain and negatively affect recovery. To integrate hand muscle tone monitoring into an assessment-driven robot-assisted therapy concept, an online assessment of muscle tone is proposed and incorporated into an exercise. The exercise was preliminarily tested in a pilot study with five chronic stroke survivors (non-spastic at rest) and five healthy participants to identify the range of potential physiological muscle tone change that can happen also in a non-spastic population during a single exercise session. In both groups, the muscle tone level during hand opening was higher in fast 20 mm ramp-and-hold perturbations (150 ms) compared to slow (250 ms) perturbations, and corresponded to a force change of approximately 4-5 N. Despite not being statistically significantly different, in the stroke group the force change (and the speed dependency) increased with exercise time. This information could serve as a basis to develop strategies to continuously adapt the difficulty and activity level required in robot-assisted rehabilitation and to monitor or even control the muscle tone evolution over time","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114726394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Influence of visual-coupling on bimanual coordination in unilateral spastic cerebral palsy 视觉偶联对单侧痉挛性脑瘫双手协调能力的影响
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779390
S. A. Mutalib, M. Mace, H. Ong, E. Burdet
{"title":"Influence of visual-coupling on bimanual coordination in unilateral spastic cerebral palsy","authors":"S. A. Mutalib, M. Mace, H. Ong, E. Burdet","doi":"10.1109/ICORR.2019.8779390","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779390","url":null,"abstract":"Controlling two objects simultaneously during a bimanual task is a cognitively demanding process; both hands need to be temporally and spatially coordinated to achieve the shared task goal. Children with unilateral spastic cerebral palsy (USCP) exhibit severe sensory and motor impairments to one side of their body that make the process of coordinating bimanual movements particularly exhausting. Prior studies have shown that performing visually-coupled task could reduce cognitive interference associated with performing ‘two tasks at once’ in an uncoupled bimanual task. For children with USCP, who also present with cognitive delay, performing this type of task may allow them to process and plan their movement faster. We tested this hypothesis by examining the grip force control of 7 children with USCP during unimanual and visually-coupled bimanual tasks. Results demonstrated that despite the visual coupling, the bimanual coordination of these children remained impaired. However, there may be a potential benefit of visually-coupled task in encouraging both hands to initiate in concert. The implication of the study for children with USCP is discussed.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123585922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of varying the rest period on the onset angle of lumbar flexion-relaxation in simulated sheep shearing: a preliminary study 不同休息时间对模拟剪羊毛时腰椎屈曲-松弛起始角影响的初步研究
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779480
Mark Robinson, Raphael M. Mayer, Y. Tan, D. Oetomo, C. Manzie
{"title":"Effects of varying the rest period on the onset angle of lumbar flexion-relaxation in simulated sheep shearing: a preliminary study","authors":"Mark Robinson, Raphael M. Mayer, Y. Tan, D. Oetomo, C. Manzie","doi":"10.1109/ICORR.2019.8779480","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779480","url":null,"abstract":"Wool harvesting remains an important industry in Australia, but its workers suffer from extreme rates of injury, in particular, the lower back injuries. Reducing injuries in sheep shearing could be as simple as extending shearer rest periods between sheep, but the effect of this has not previously been studied. The lumbar flexion-relaxation phenomenon is present in sheep shearing and the onset angle of this phenomenon can provide insight into lower back injury risk. The increase in the onset angle of lumbar flexion-relaxation over several work-rest periods for a simulated sheep shearing task is studied. The rate of increase in the onset angle of lumbar flexion-relaxation was higher when shorter breaks were taken for all participants at least unilaterally, indicating that longer rest breaks could reduce back injury risk. Due to the constraints of the sheep shearing occupation, this type of intervention is better suited to learner and novice shearers. Assistive robotic devices would be more suited to reduce injuries in expert shearers, and some insight is provided for the application of these within sheep shearing. Further study of this phenomenon in sheep shearing could provide additional insight to developing an assistive device that could reduce injury.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123953822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A framework for closing the loop between human experts and computational algorithms for the assessment of movement disorders 一个在人类专家和评估运动障碍的计算算法之间闭合循环的框架
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779458
Christopher Jarrett, C. Shirota, A. McDaid, D. Piovesan, A. Melendez-Calderon
{"title":"A framework for closing the loop between human experts and computational algorithms for the assessment of movement disorders","authors":"Christopher Jarrett, C. Shirota, A. McDaid, D. Piovesan, A. Melendez-Calderon","doi":"10.1109/ICORR.2019.8779458","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779458","url":null,"abstract":"Clinical assessment of abnormal neuromechanics is typically performed by manipulation of the affected limbs; a process with low inter- and intra-rater reliability. This paper aims at formalizing a framework that closes the loop between a clinician’s expertise and computational algorithms, to enhance the clinician’s diagnostic capabilities during physical manipulation. The framework’s premise is that the dynamics that can be measured by manipulation of a limb are distinct between movement disorders. An a priori database contains measurements encoded in a space called the information map. Based on this map, a computational algorithm identifies which probing motions are more likely to yield distinguishing information about a patient’s movement disorder. The clinician executes this movement and the resulting dynamics, combined with clinician input, is used by the algorithm to estimate which of the movement disorders in the database are most probable. This is recursively repeated until a diagnosis can be confidently made. The main contributions of this paper are the formalization of the framework and the addition of the information map to select informative movements. The establishment of the framework provides a foundation for a standardized assessment of movement disorders and future work will aim at testing the framework’s efficacy.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125289535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Human-assistive Robotic Platform with Quadrupedal Locomotion* 四足运动的人类辅助机器人平台*
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779398
Tao Shen, M. Afsar, Md Rejwanul Haque, Eric W. McClain, S. Meek, Xiangrong Shen
{"title":"A Human-assistive Robotic Platform with Quadrupedal Locomotion*","authors":"Tao Shen, M. Afsar, Md Rejwanul Haque, Eric W. McClain, S. Meek, Xiangrong Shen","doi":"10.1109/ICORR.2019.8779398","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779398","url":null,"abstract":"Mobility impairment is becoming a challenging issue around the world with a rapid increase on aging population. Existing tools of walking assistance for mobility-impaired people include passive canes or wheeled rollators which increase energy consumption on the users and disturb the users’ walking rhythm, and powered wheeled chairs which could preclude the muscle activities and accelerate the degeneration of the lower limbs. The research in this paper aiming at helping mobility-impaired people proposes a novel robotic platform with quadrupedal locomotion. With motorized actuation, the quadruped robotic platform could accompany the user at the center and provide protection and possible walking assistance if needed. As the robotic platform is equipped with a leg locomotion, it can enlarge the user’s activity environments, such as both indoor flat floor and outdoor uneven terrain. It can even assist the user to involve in some mobility challenging activities, such as climbing stairs. In this paper, we illustrate the mechanical design of the robotic platform. A continuous gait planning is proposed to create a smooth locomotion for the robot. To quantify the performance, a system-level walking experimentation was conducted, and the results showed that quadruped robotic platform can maintain a statically stability which demonstrate the feasibility and capability of the robotic application for walking assistance.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130670706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Do we need complex rehabilitation robots for training complex tasks? 我们需要复杂的康复机器人来训练复杂的任务吗?
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779384
Joaquin Penalver-Andres, Jaime E. Duarte, H. Vallery, Verena Klamroth-Marganska, R. Riener, L. Marchal-Crespo, G. Rauter
{"title":"Do we need complex rehabilitation robots for training complex tasks?","authors":"Joaquin Penalver-Andres, Jaime E. Duarte, H. Vallery, Verena Klamroth-Marganska, R. Riener, L. Marchal-Crespo, G. Rauter","doi":"10.1109/ICORR.2019.8779384","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779384","url":null,"abstract":"One key question in motor learning is how the complex tasks in daily life – those that require coordinated movements of multiple joints – should be trained. Often, complex tasks are directly taught as a whole, even though training of simple movement components before training the entire movement has been shown to be more effective for particularly complex tasks (“part-whole transfer paradigm”). The important implication of the part-whole transfer paradigm, e.g. on the field of rehabilitation robotics, is that training of most complex tasks could be simplified and, subsequently, devices used to train can become simpler and more affordable. In this way, robot-assisted rehabilitation could become more accessible. However, often the last step in the training process is forgotten: the recomposition of several simple movement components to a complete complex movement. Therefore, at least for the last training step, a complex rehabilitation device may be required.In a pilot study, we wanted to investigate if a complex robotic device (e.g. an exoskeleton robot with many degrees of freedom), such as the ARMin rehabilitation robot, is really beneficial for training the coordination between several simpler movement components or if training using visual feedback would lead to equal benefits. In a study, involving 16 healthy participants, who were instructed in a complex rugby motion, we could show first trends on the following two aspects: i) the part-whole transfer paradigm seems to hold true and therefore, simple robots might be used for training movement primitives. ii) Visual feedback does not seem to have the same potential, at least in healthy humans, to replace visuo-haptic guidance for movement recomposition of complex tasks. Therefore, complex rehabilitation robots seem to be beneficial for training complex real-life tasks.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131079042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effects of rTMS and intensive rehabilitation in Parkinson’s Disease on learning and retention 帕金森病患者rTMS和强化康复对学习和记忆的影响
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779471
G. Marchesi, G. A. Albanese, D. Ferrazzoli, Shaina George, S. Ricci, E. Tatti, A. Rocco, A. Quartarone, G. Frazzitta, M. Ghilardi
{"title":"Effects of rTMS and intensive rehabilitation in Parkinson’s Disease on learning and retention","authors":"G. Marchesi, G. A. Albanese, D. Ferrazzoli, Shaina George, S. Ricci, E. Tatti, A. Rocco, A. Quartarone, G. Frazzitta, M. Ghilardi","doi":"10.1109/ICORR.2019.8779471","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779471","url":null,"abstract":"Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson’s Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129280399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Analysis on an Origami-structured Actuator that Enhances Both Backdriveability and Power Amplification 提高反驱动性能和功率放大的折纸结构作动器分析
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) Pub Date : 2019-06-01 DOI: 10.1109/ICORR.2019.8779467
Dongwon Kim
{"title":"Analysis on an Origami-structured Actuator that Enhances Both Backdriveability and Power Amplification","authors":"Dongwon Kim","doi":"10.1109/ICORR.2019.8779467","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779467","url":null,"abstract":"In the author’s previous study, an origami-structured compliant actuator, named OSCA, was invented for human-robot interaction where sufficient moment output is required under a limited power supply. In this study, the compressibility of airflow within the actuator that essentially provides elasticity as well as backdriveability is in the spotlight. Elasticity can increase the actuator’s power output in the same way as does a series elastic actuator (SEA). This study demonstrates that an OSCA operated with a servo valve is equivalent to an SEA with a typical spring. That is, power output amplification can be achieved with congruent stiffness of the air within the actuator.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130991465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信