HorticulturaePub Date : 2024-07-17DOI: 10.3390/horticulturae10070758
Anicia Gomes, Conceição Santos, L. Dinis, R. Mendes
{"title":"Escherichia coli Inoculation Decreases the Photosynthetic Performance on Tomato Plants: Clarifying the Impact of Human Commensal Bacteria on Transient Plant Hosts","authors":"Anicia Gomes, Conceição Santos, L. Dinis, R. Mendes","doi":"10.3390/horticulturae10070758","DOIUrl":"https://doi.org/10.3390/horticulturae10070758","url":null,"abstract":"The commensal/pathogenic Escherichia coli affects humans and animals, being present in diverse environmental niches, possibly surviving due to its adaptation to transient plant hosts like crops, increasing the risk of foodborne diseases. E. coli interaction with the plant host remains unknown, particularly the impacts on photosynthesis. We hypothesize that E. coli influences the tomato transient host’s photosynthetic capacity. To validate this hypothesis, we exposed 57-day-old tomato plants (Solanum lycopersicum) to different inoculation conditions, namely, non-inoculated plants (negative control, C−); plants directly injected with E. coli SL6.1 (107 CFU/mL) (positive control, C+); plants irrigated one time with E. coli SL6.1 (107 CFU/mL); and plants chronically irrigated with E. coli SL6.1 (104 CFU/mL). No significant changes were observed in chlorophyll fluorescence, pigments’ contents, morphological aspects, and fruiting in all conditions. However, irrigated plants (chronically and one-time contaminated) had decreased stomatal conductance (gs, 31.07 and 34.42 mol m−2 s−1, respectively, vs. 53.43 and 48.08 mol m−2 s−1 in C− and C+, respectively), transpiration rate (E, 0.32 and 0.35 mol m−2 s−1 in chronically and one-time contaminated conditions vs. 0.57 and 0.48 mol m−2 s−1 in C− and C+, respectively), and a trend of increased intrinsic carboxylation (Ci, 384 and 361 ppm in chronically and one-time irrigated plants vs. 321 and 313 ppm in C− and C+, respectively). The one-time inoculated plants presented more severe effects than the remaining conditions, with lower net photosynthetic rate (PN, 0.93 vs. 3.94–5.96 μmol (CO2) m−2 s−1 in the other conditions), intrinsic water use efficiency (iWUE, 33.1 vs. 74.51–184.40 μmol (CO2)/ mmol (H2O) in the chronically irrigated and the control plants), and intrinsic carboxylation efficiency (iCE, 0.003 vs. 0.012–0.022 μmol (CO2)/ppm in the remaining conditions). Our data support that some observed effects are similar to those associated with phytopathogenic bacteria. Lastly, we propose that the decrease in some parameters of gas exchange requires direct contact with the leaf/stomata, and is mainly observed for high concentrations of E. coli.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-07-17DOI: 10.3390/horticulturae10070756
Wedson Aleff Oliveira da Silva, E. Aroucha, Nícolas Oliveira de Araújo, F. Santos, José Francismar de Medeiros, Arthur Lira Vasconcelos de Sousa, Luiz Paulo de Oliveira Queiroz, R. H. de Lima Leite
{"title":"The Shelf Life of Yellow Passion Fruit with an Edible Biocomposite Coating Based on Chitosan, Graphene Oxide Nanoparticles, and Beeswax","authors":"Wedson Aleff Oliveira da Silva, E. Aroucha, Nícolas Oliveira de Araújo, F. Santos, José Francismar de Medeiros, Arthur Lira Vasconcelos de Sousa, Luiz Paulo de Oliveira Queiroz, R. H. de Lima Leite","doi":"10.3390/horticulturae10070756","DOIUrl":"https://doi.org/10.3390/horticulturae10070756","url":null,"abstract":"Yellow or sour passion fruit is a climacteric fruit with a high rate of respiration and ethylene production, and postharvest technology is needed to extend its shelf life. This study investigated the properties of a biocomposite film with chitosan (CH) incorporated with beeswax (BW) and graphene oxide (GO) nanoparticles for use as an edible coating to extend the shelf life of yellow passion fruit at 22 °C and 70% RH for eight days. CH films associated with BW showed lower water vapor permeability (WVP) than films with CH alone. However, adding GO to the CH + BW biopolymer matrix improved the WVP, decreased the solubility (12.8%), and increased the opacity of the film by 9% compared to those of the CH film. Fruits coated with CH + BW or CH + BW + GO exhibited a reduction in respiration rate, a slower ripening process by approximately 3 days, and a significant decrease in weight loss. This also resulted in a higher soluble solids content and increased antioxidative capacity of the pulp. The incorporation of GO into the CH + BW matrix resulted in a more pronounced delay of fruit ripening, as evidenced by the lower depigmentation of the peel at eight days, with a lightness approximately 10.7% lower at 54.92, a chroma value 16.5% lower at 49.33, a hue angle 7.2% higher at 92.56, a soluble solid (SS) content 16.7% higher at 11.32°Brix, and an acidity 31.9% higher at 4.18% compared to the control. Furthermore, the biopolymer packaging led to a higher consumer acceptance score for the fruit.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141830433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-07-17DOI: 10.3390/horticulturae10070754
A. Manco, Matteo Giaccone, T. Zenone, A. Onofri, Francesco Tei, M. Farneselli, Mara Gabbrielli, Marina Allegrezza, A. Perego, Vincenzo Magliulo, L. Vitale
{"title":"An Overview of N2O Emissions from Cropping Systems and Current Strategies to Improve Nitrogen Use Efficiency","authors":"A. Manco, Matteo Giaccone, T. Zenone, A. Onofri, Francesco Tei, M. Farneselli, Mara Gabbrielli, Marina Allegrezza, A. Perego, Vincenzo Magliulo, L. Vitale","doi":"10.3390/horticulturae10070754","DOIUrl":"https://doi.org/10.3390/horticulturae10070754","url":null,"abstract":"Arable soils significantly contribute to atmosphere pollution through N2O emissions due to the massive use of N-based fertilizers and soil managements. N2O formation in the soil occurs mainly through nitrification and denitrification processes, which are influenced by soil moisture, temperature, oxygen concentration, pH, and the amount of available organic carbon and nitrogen. This review synthetically presents the mechanisms of N2O formation and emission in arable land and some of the current strategies to improve crop nutrient use efficiency. Biological nitrification inhibitor-based agronomic strategies are also presented as future prospects for the sustainable management of crops, which is missing in most of the reviews.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-07-04DOI: 10.3390/horticulturae10070711
Meroua Foughar, M. Arrobas, M. Rodrigues
{"title":"Mealworm Larvae Frass Exhibits a Plant Biostimulant Effect on Lettuce, Boosting Productivity beyond Just Nutrient Release or Improved Soil Properties","authors":"Meroua Foughar, M. Arrobas, M. Rodrigues","doi":"10.3390/horticulturae10070711","DOIUrl":"https://doi.org/10.3390/horticulturae10070711","url":null,"abstract":"There is a need for alternatives or complements to synthetic fertilizers to enhance agricultural sustainability. Applying organic amendments can play a significant role in this. Insect droppings show high potential, though studies evaluating their agronomic value have only recently begun to emerge. This study compared black soldier fly (Hermetia illucens L.) and mealworm (Tenebrio molitor L.) larvae frass with another organic amendment (Nutrimais) derived from composting forestry, agro-industrial, and domestic waste. The experiment also included ammonium nitrate at two rates [the same as the organic amendments, 50 kg ha–1 nitrogen (N) (FullR), and half that rate (HalfR)] and an unfertilized control. The study spanned two growth cycles of lettuce (Lactuca sativa L.) grown in pots, followed by unfertilized oats (Avena sativa L.) to assess the residual effects of the fertilizing treatments. Mealworm larvae frass mineralized rapidly, with an apparent N recovery of 37.4% over the two lettuce growth cycles, indicating its high availability to soil heterotrophic microorganisms. The average dry matter yield (DMY) of lettuce was the highest among all treatments (12.8 and 9.8 g plant–1 in the first and second lettuce cycles), even compared to the FullR treatment (12.2 and 7.8 g plant–1), though without significant differences. Although mealworm larvae frass exhibited a high mineralization rate, the DMY cannot be attributed solely to N supply, as plants in the FullR treatment showed better N nutritional status. Mealworm larvae frass provided strong evidence of a plant biostimulant effect, not explained by the variables measured in this study. Black soldier fly larvae frass exhibited typical behavior of a moderately reactive organic amendment, while Nutrimais showed low reactivity, with a near-neutral mineralization/immobilization balance. The results suggest mealworm larvae frass is recommended for early maturing vegetable crops, whereas Nutrimais appears more suitable for perennial crops with low short-term nutrient requirements.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141837429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-07-01DOI: 10.3390/horticulturae10070696
Bing Tian, Chenglin Tang, Jiaqi Liu, Qiuping Wang, Wenhao Feng, Yue Su, Cheng Zhang, Yang Lei
{"title":"Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata","authors":"Bing Tian, Chenglin Tang, Jiaqi Liu, Qiuping Wang, Wenhao Feng, Yue Su, Cheng Zhang, Yang Lei","doi":"10.3390/horticulturae10070696","DOIUrl":"https://doi.org/10.3390/horticulturae10070696","url":null,"abstract":"Continuous cropping (CC) stress severely limits the growth and industrial development of Pinellia ternata. Epihomobrassinolide (EBR) is a natural product that widely participates in many the physiological activities of many plants. Thiamethoxam·flutolanil·azoxystrobin (TFA) has been registered as a seed coating agent in crop production. In this work, the effects of seeds soaked with EBR, seeds coated with TFA, and their co-application on the plant growth, electrophysiological information (as physiological activities related to plant electrical signals), leaf photosynthesis, plant resistance, bulb quality, and yield of CC P. ternata were evaluated. The aim of this work is to excogitate a practicable agronomic measure for ameliorating the growth of CC P. ternata. The results show that soaking the seeds with EBR or coating the seeds with TFA could effectively enhance the plant height, leaf area, and stem diameter of CC P. ternata, promote its emergence seedling ratio, and decrease its inverted seedling ratio, and their associated application was found to be more efficient. Additionally, their associated application effectively enhanced the intrinsic capacitance (IC), intracellular water metabolism, nutrient transport, and metabolic activity and decreased the intrinsic resistance (IR), impedance (IZ), capacitive reactance (IXc), and inductive reactance (IXL). Meanwhile, their associated application could reliably enhance the photosynthetic capacity and stress resistance, and effectively improve the bulb quality and yield. This study emphasizes that the associated application of seeds soaked with a 0.004% aqueous EBR solution diluted 1000 times and seeds coated with a 24% TFA flowable concentrate at 1.6 mL kg−1 seed can be used as a novel and practicable technology for alleviating the CC stress of P. ternata and ameliorating its growth, electrophysiological information, resistance, quality, and yield.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-07-01DOI: 10.3390/horticulturae10070695
M. Coimbra, Israel José Pereira Garcia, Hérica de Lima Santos, Ana Hortência Fonsêca Castro
{"title":"Short-Term Liquid Nitrogen Storage of Pyrostegia venusta Embryos: Effects on Germination, Phenotypic and Biochemical Characteristics, and In Vitro Secondary Metabolite Production","authors":"M. Coimbra, Israel José Pereira Garcia, Hérica de Lima Santos, Ana Hortência Fonsêca Castro","doi":"10.3390/horticulturae10070695","DOIUrl":"https://doi.org/10.3390/horticulturae10070695","url":null,"abstract":"In this study, short-term liquid nitrogen (LN) storage was used as a strategy to conserve Pyrostegia venusta embryos, and its effects on in vitro germination, phenotypic and biochemical characteristics, and in vitro secondary metabolite production were assessed. Embryos stored in LN for 1 and 7 days presented a higher germination rate and germination speed index compared to those of the control (non-cryostored embryos). Short-term LN storage also favored the phenotypic characteristics of seedlings. LN storage significantly affected the proteins (PTN), soluble sugar (SS) and reducing sugar (RS) contents, oxidative metabolism, and phenylalanine ammonia-lyase (PAL) activity, as well as the total phenolic compound, flavonoid, phytosterol, and alkaloid levels in seedlings regenerated from embryos cryostored for 7 days. Benzoic acid derivatives and flavonoids were observed in regenerated non-acclimatized seedlings. LN storage did not affect the survival rate or phenotypic characteristics of seedlings during acclimatization. Acclimatization promoted significant changes in PTN, SS and RS contents, oxidative metabolism, and PAL activity in seedlings from embryos cryostored for 7 days. Roots from acclimatized seedlings exhibited the highest phenolic, phytosterol, and total alkaloid levels. Differences in the chromatographic profiles of the acclimatized seedlings compared with the non-acclimatized seedlings were observed. LN storage can be an effective means of ex situ conservation of P. venusta genetic resources.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-06-04DOI: 10.3390/horticulturae10060588
Lifei Chen, Jiahui Yu, Xi Lu, Qi Wang, Shizhuo Wang, Yuze Shan, Yang Liu, Yuan Meng, Yunwei Zhou
{"title":"Iris typhifolia Responses to Saline–Alkali Stress: Germination, Antioxidant Activity, Hormones, and Photosynthetic Performance","authors":"Lifei Chen, Jiahui Yu, Xi Lu, Qi Wang, Shizhuo Wang, Yuze Shan, Yang Liu, Yuan Meng, Yunwei Zhou","doi":"10.3390/horticulturae10060588","DOIUrl":"https://doi.org/10.3390/horticulturae10060588","url":null,"abstract":"Iris typhifolia Kitag is a perennial herbaceous species with high ornamental and applied value. Elucidating the mechanism of saline–alkali tolerance in Iris is crucial for their promotion in saline–alkali areas. Saline–alkali stress is one of the factors that affects plant growth, which has become a significant global issue. In this study, we measured the physiological and biochemical indexes of I. typhifolia, through germination and potting trials, to evaluate the resistance of I. typhifolia to different levels of artificial saline–alkali stress (0, 50, 100, 150, and 200 mmol·L−1). The results showed that artificial saline–alkali stress negatively impacted germination parameters, cell membrane integrity, and photosynthetic parameters. Different trends in osmoregulatory substances and endogenous hormones were observed. It was shown that I. typhifolia had a potential adaptability to the saline–alkali environment by enhancing its internal defense mechanism. Based on regression analyses, the germination threshold of I. typhifolia was calculated to be 87.15 mmol·L−1, which provided a theoretical basis for the application in soil saline–alkalization areas.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-06-04DOI: 10.3390/horticulturae10060589
Lilin Chen, Julia Rycyna, Ping Yu
{"title":"Investigating the Effect of Hydrafiber and Biochar as a Substitute for Peat-Based Substrate for Zinnia (Zinnia elegans) and Snapdragon (Antirrhinum majus) Production","authors":"Lilin Chen, Julia Rycyna, Ping Yu","doi":"10.3390/horticulturae10060589","DOIUrl":"https://doi.org/10.3390/horticulturae10060589","url":null,"abstract":"Increasing environmental and economic concerns necessitate the research for peat moss alternatives, aiming to balance ecological sustainability with cost-effectiveness. This study assessed whether biochar (BC) and hydrafiber (HF) could be a partial replacement for peat moss as substrate components. Twelve substrates were formulated by either mixing BC (20%, 40%, and 60%, by vol.) with HF (20%, 40%, and 60%, by vol.), with the remaining being peat moss or mixing BC (0%, 20%, 40%, and 60%, by vol.) with the commercial substrates (CS) to grow zinnia (Zinnia elegans) and snapdragon (Antirrhinum majus) plants in containers. The physical properties of the substrates, including container capacity, total porosity, air space, bulk density, and chemical properties including leachate pH and electrical conductivity (EC) were measured. Plant growth parameters including growth index (GI) and leaf greenness (indicated with SPAD), biomass, and number of flowers were measured biweekly. The results showed all the substrate mixes had similar air space, bulk density, and SPAD. Treatment with 20% BC and 80% CS yielded the highest GI, biomass, and numbers of flowers in both zinnia and snapdragon. In conclusion, BC could be used to partially (20%) replace commercial substrate mix for container-grown zinnia and snapdragon.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-06-04DOI: 10.3390/horticulturae10060590
Muneiwa Rumani, T. Mabhaudhi, Maanea L. Ramphinwa, Anza-Tshilidzi Ramabulana, N. Madala, L. S. Magwaza, F. Mudau
{"title":"Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment","authors":"Muneiwa Rumani, T. Mabhaudhi, Maanea L. Ramphinwa, Anza-Tshilidzi Ramabulana, N. Madala, L. S. Magwaza, F. Mudau","doi":"10.3390/horticulturae10060590","DOIUrl":"https://doi.org/10.3390/horticulturae10060590","url":null,"abstract":"The influence of water regimes on plants is crucial for integrating bush tea (Athrixia phylicoides DC.) into strategies in Sub-Saharan Africa to tackle food and nutritional insecurity by considering physiological aspects, nutritional yield, nutritional water productivity, and metabolite composition. The objective of the study was to determine the physiological aspects, including leaf gas exchange and chlorophyll fluorescence, nutritional yield, nutritional water productivity, and metabolite composition of bush tea under varying water regimes. The tunnel experiment was laid out in a randomized complete block design (RCBD) with treatments consisting of three water regimes: 100% of crop water requirement (ETa), 30% of ETa, and a control (no irrigation), all replicated three times. The morphological aspects were recorded on a weekly basis. However, yield, nutrient content, nutritional water productivity (NWP), and phytochemical composition were determined at harvest. The phytochemical analysis by liquid chromatography mass spectrometry (LC-MS), coupled with visualization of the detected chemical spaces through molecular networking, indicated Athrixia phylicoides DC. to be rich in various bioactive compound derivatives, including methyl chlorogenate, flavonoids, tartaric acid, caffeoylquinic acid, and glutinane. The results showed that 30% ETa enhanced plant growth, nutrient content, and nutritional water productivity compared to other water treatments. Nevertheless, 100% ETa yielded more (95.62 kg ha−1) than 30% ETa (60.61 kg ha−1) and control (12.12 kg ha−1). The accumulation of chlorogenic acids was higher under 30% ETa compared to 100% ETa and control. Therefore, this study is the first to determine the accumulation of various bioactive compounds in bush tea leaf extracts under varying water regimes. This confirms that in areas with low water availability, bush tea is well adapted for production without limiting nutrients.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-06-03DOI: 10.3390/horticulturae10060582
Dezső Kovács, Katalin Horotán, László Orlóci, Marianna Makádi, István Mosonyi, Magdolna Sütöri-Diószegi, S. Kisvarga
{"title":"Morphological and Physiological Responses of Weigela florida ‘Eva Rathke’ to Biostimulants and Growth Promoters","authors":"Dezső Kovács, Katalin Horotán, László Orlóci, Marianna Makádi, István Mosonyi, Magdolna Sütöri-Diószegi, S. Kisvarga","doi":"10.3390/horticulturae10060582","DOIUrl":"https://doi.org/10.3390/horticulturae10060582","url":null,"abstract":"Ornamental horticulture and breeding, as well as urban landscape architecture, are facing increasing challenges driven by an intensely changing climate and urbanisation. The expansion of cities should be combined with an overall growth of green spaces, where ornamental plant species and cultivars will have to withstand a diverse range of environmental conditions, whereby they are often exposed to multiple stress factors. One of the most widely used ornamental shrub species Weigela florida ‘Eva Rathke’ was treated with the growth promoters Bistep with humic and fulvic acid, Kelpak® seaweed extract, and Yeald Plus with a high zinc content to test their applicability in a plant nursery. Bistep decreased the physiological parameters (the transpiration rate by 60%, the evapotranspiration rate by 56.5%, and the proline stress enzyme content level by 82.2%), indicating the stress level of the treated plants. The activity of β-glucosidase decreased with all growth-promoting treatments (11.5% for Kelpak and 9.5% for Yeald Plus), as did β-glucosaminidase (22.1% for Kelpak and 9.8% for Yeald Plus), but Bistep treatment reduced the activity of the enzymes less (9.9% for β-glucosidase and 3.3% for β-glucosaminidase). The measured alkaline phosphatase enzyme activity increased with treatment (by 10.7% for Kelpak, 11.7% for Yeald Plus, and 12.63% for Bistep). Based on the results, it was concluded that Bistep and Yeald Plus may be suitable for use in the studied variety, whereas Kelpak® may not be suggested in plant nurseries for growing W. florida ‘Eva Rathke’ plants.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}