Green Materials最新文献

筛选
英文 中文
Pyrolysis of Waste Polyolefin’s and E-component to Produce Renewable Green Fuel (RGF) Over CdCO3 废聚烯烃和e组分热解制备可再生绿色燃料(RGF)的研究
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-11-08 DOI: 10.1680/jgrma.21.00024
M. Singh, Sudesh Kumar
{"title":"Pyrolysis of Waste Polyolefin’s and E-component to Produce Renewable Green Fuel (RGF) Over CdCO3","authors":"M. Singh, Sudesh Kumar","doi":"10.1680/jgrma.21.00024","DOIUrl":"https://doi.org/10.1680/jgrma.21.00024","url":null,"abstract":"The interest and relevance of the present paper is in the current waste plastics valorization scenario. The rapid depletion of fossil sources carbon as crude oil and their ever-increasing costs has led to an intensive search for alternative fuels. The renewable green fuel (RGF) or alternative fuel was obtained from waste low and high-density polyethylene (LD-PE, HD-PE) or polyolefin’s and computer-body through pyrolysis process using a CdCO3 from 23 °C to 400 °C. Five types of hydrocarbons were observed through 2D GCxGC/TOFMS, such as 7.621 % paraffin’s, 53.66 % branched / cyclic hydrocarbons, 14.83 % aromatics, 0.37 % phenanthrenes, and some unclassified compounds were 27.11 %. The research octane number of RGF was 88.29. The bromine number of RGF is 34.03 %. RGF was suitable for diesel engines and diesel furnaces without any upgrading. During the first, second and third pyrolysis experiments, 98 g, 95 g and 100 g (wt %) waste granules with 2 g, 5 g and 0 g (wt %) CdCO3 into RGFs were 85 %, 89 % and 80 % collected; uncondensed gases were 14.22 %, 10.15 % and 19.52 % collected; the residue were 0.78 %, 0.85 % and 0.48 % collected.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44685471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modification of Waste Persimmon Peel and Application in Water-Based Drilling Fluid 废柿皮的改性及其在水基钻井液中的应用
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-10-27 DOI: 10.1680/jgrma.21.00016
Xuefan Gu, Long Gao, Yan Sun, Weichao Du, Jie Zhang, Gang Chen
{"title":"Modification of Waste Persimmon Peel and Application in Water-Based Drilling Fluid","authors":"Xuefan Gu, Long Gao, Yan Sun, Weichao Du, Jie Zhang, Gang Chen","doi":"10.1680/jgrma.21.00016","DOIUrl":"https://doi.org/10.1680/jgrma.21.00016","url":null,"abstract":"","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46719342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preparation and Mechanical Properties of Green Epoxy/Chitosan/Silver Nanocomposites 绿色环氧树脂/壳聚糖/银纳米复合材料的制备及力学性能
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-16 DOI: 10.1680/JGRMA.21.00020
MahmudAbu, DevChaity, MeemMoumita Tasnim, GafurMd Abdul, HoqueMd Asadul
{"title":"Preparation and Mechanical Properties of Green Epoxy/Chitosan/Silver Nanocomposites","authors":"MahmudAbu, DevChaity, MeemMoumita Tasnim, GafurMd Abdul, HoqueMd Asadul","doi":"10.1680/JGRMA.21.00020","DOIUrl":"https://doi.org/10.1680/JGRMA.21.00020","url":null,"abstract":"So far, epoxy is being extensively used in various engineering and structural applications. Epoxy is non-biodegradable and thus creating ecological problems. Apart from ecological problems, epoxy r...","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48302213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of synthesis conditions on structure and magnetic properties of MnFe2O4 particles 合成条件对MnFe2O4颗粒结构和磁性能的影响
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-13 DOI: 20.00010
Nguyen Van Quang, Pham Thi Lan Huong, Nguyen Tu, Nguyen Thi Huyen, Nguyen Tri Tuan, Manh Trung Tran, Anh-Tuan Le
{"title":"Effects of synthesis conditions on structure and magnetic properties of MnFe2O4 particles","authors":"Nguyen Van Quang, Pham Thi Lan Huong, Nguyen Tu, Nguyen Thi Huyen, Nguyen Tri Tuan, Manh Trung Tran, Anh-Tuan Le","doi":"20.00010","DOIUrl":"https://doi.org/20.00010","url":null,"abstract":"Manganese ferrite (MnFe<sub>2</sub>O<sub>4</sub>) nanoparticles were synthesized through a coprecipitation method using manganese (II) chloride tetrahydrate (MnCl<sub>2</sub>·4H<sub>2</sub>O) and ferric chloride hexahydrate (FeCl<sub>3</sub>·6H<sub>2</sub>O) as precursors. The scanning electron microscopy images showed that the as-synthesized particles were granular and about 20 nm. The X-ray diffraction patterns revealed that the manganese ferrite phase was completely decomposed into ferric oxide (Fe<sub>2</sub>O<sub>3</sub>) and manganese (III) oxide (Mn<sub>2</sub>O<sub>3</sub>) after annealing above 800°C in air. In contrast, its crystalline quality significantly improved when it was annealed in argon. By using the vibrating-sample magnetometry technique, it was demonstrated that the saturation magnetization (<i>M</i> <sub>s</sub>) of the as-prepared sample (~36.6 emu/g) decreased sharply up to ~5 emu/g after annealing at 1000°C in air and significantly increased to ~77.6 emu/g when it was annealed at 1000°C in argon. Under sunlight radiation, a higher efficiency was observed for manganese ferrite particles annealed in argon in the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), mainly due to the Fenton reaction between manganese ferrite and hydrogen peroxide. The authors suggest that the presence of hydrogen peroxide and the enhancement of the crystalline quality of the manganese ferrite phase are the two leading factors in improving methylene blue degradation efficiency.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential use of phosphogypsum in paving blocks 磷石膏在铺路砖中的潜在用途
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-13 DOI: 20.00001
Abdessattar Hamdi, Nejib Ben Jamaa, Imen Kallel Kammoun
{"title":"Potential use of phosphogypsum in paving blocks","authors":"Abdessattar Hamdi, Nejib Ben Jamaa, Imen Kallel Kammoun","doi":"20.00001","DOIUrl":"https://doi.org/20.00001","url":null,"abstract":"The present work aims to contribute to finding more recycling routes for phosphogypsum (PG) and its potential uptake in the material construction industry as paving blocks. Laboratory testing was conducted to formulate mixes using PG as fine sand replacement. An optimal 20% substitution rate was proved. Industrially processed paving blocks were made for high-quality experimental investigation. The most interesting testing results of PG paving blocks are the low water absorption coefficient of 5.7% and excellent mechanical properties, including high compressive and flexural strengths at early age (20.7 and 4.65 MPa at 7 days, respectively). Compressive strength evolves with respect to the curing period: 26% increase at 28 days and 36% increase at 90 days; flexural strength evolves from 6% at 28 days to 10% at 90 days. The leaching test showed low levels of heavy metals released, and their concentrations were lower in the mix than in the raw PG. For all the aforementioned results, PG waste from a phosphate plant in Gabès, Tunisia was proved to have high potential for reuse in the manufacturing of paving blocks with low health risks and excellent properties. Reusing PG waste in paving blocks would thus contribute to solving an environmental issue and reduce the use of sand, which is prone to depletion as a non-renewable resource.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of coupling agent and alkali treatment on mechanical, thermal and morphological properties of flax-fiber-reinforced PLA composites 偶联剂和碱处理对亚麻纤维增强PLA复合材料力学、热学和形态性能的影响
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-13 DOI: 20.00062
Ali Avci, Aysegul Akdogan Eker, Mehmet Safa Bodur
{"title":"Effect of coupling agent and alkali treatment on mechanical, thermal and morphological properties of flax-fiber-reinforced PLA composites","authors":"Ali Avci, Aysegul Akdogan Eker, Mehmet Safa Bodur","doi":"20.00062","DOIUrl":"https://doi.org/20.00062","url":null,"abstract":"In the current study, three different types of biocomposites based on poly(lactic acid) (PLA) and short flax fiber were produced using extrusion. Alkali treatment was conducted on the flax fiber before the extrusion process in order to improve the interfacial adhesion between the flax fiber and the PLA matrix. The influence of the coupling agent and alkali treatment on the composite materials was investigated with regard to the mechanical, thermal and thermomechanical properties of the injected composites. The results show that the coupling agent has a favorable effect on the thermal, thermomechanical and mechanical properties of the composites. The flexural and tensile moduli of the composites were significantly enhanced compared with those of pure PLA samples. Dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) results indicate that the loss and storage modulus of PLA/flax fiber composites are increased compared with those of both pure PLA and composites with the coupling agent. The TGA showed that the thermal stability of PLA improved with the addition of flax fiber into PLA. Additionally, the developed flax fiber content in PLA with the coupling agent improved the tensile, flexural strength and flexural modulus. The tensile strength of the alkali-treated flax fiber increased up to 50 MPa compared with that of the untreated flax fiber. The Fourier transform infrared spectroscopy method was carried out to examine the chemical composition of the composite and interaction of functional groups for both alkali-treated and untreated flax fibers.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of grain size and reactant ratio on reduction of CO2 to CH4 by alkali metal hydride 晶粒尺寸和反应物配比对碱金属氢化物还原CO2制CH4的影响
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-13 DOI: 20.00029
Juan Zhao, Yu-Jun Sheng, Yun-Lei Teng, Bao-Xia Dong
{"title":"Impact of grain size and reactant ratio on reduction of CO2 to CH4 by alkali metal hydride","authors":"Juan Zhao, Yu-Jun Sheng, Yun-Lei Teng, Bao-Xia Dong","doi":"20.00029","DOIUrl":"https://doi.org/20.00029","url":null,"abstract":"This paper aims to investigate the influence of the grain size and the alkali metal hydride (AH, where A = lithium (Li), sodium (Na) or potassium (K))/carbon dioxide (CO<sub>2</sub>) mole ratio on carbon dioxide reduction-conversion to methane (CH<sub>4</sub>) through alkali metal hydrides at an intermediate temperature. The result of this investigation shows that the grain size and AH (A = Li, Na or K)/carbon dioxide mole ratio have a considerable effect on the methane mole percentage and output. Compared with the original sample, when the lithium or potassium hydride sample is milled for 2 h, the mole percentage and output of methane increase. When the time for which the lithium or potassium hydride sample is milled is increased from 2 to 48 h, the mole percentage and output of methane change very little. For the sodium hydride and carbon dioxide system, the grain size of the sample has little effect on the methane mole percentage and output. In brief, alkali metal hydride milled for 2 h is enough for the methanation reaction. In consideration of the AH/carbon dioxide mole ratio, the effects on different reaction systems are not consistent. Activated alkali metal hydrides can effectively convert carbon dioxide to methane under various AH/carbon dioxide mole ratios, and the higher the mole ratio of AH/carbon dioxide, the better the methanation of alkali metal hydride with carbon dioxide.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyurethane Foam from Grape Seed-Based Polyol 葡萄籽基多元醇聚氨酯泡沫
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-08 DOI: 10.1680/JGRMA.21.00022
GuShuailing, YanTingxuan, ZuoZongtao, Shaoqiang, WangBiao, LiXinlong, GengFanhui, ZhangKai, XuXia, XuJian
{"title":"Polyurethane Foam from Grape Seed-Based Polyol","authors":"GuShuailing, YanTingxuan, ZuoZongtao, Shaoqiang, WangBiao, LiXinlong, GengFanhui, ZhangKai, XuXia, XuJian","doi":"10.1680/JGRMA.21.00022","DOIUrl":"https://doi.org/10.1680/JGRMA.21.00022","url":null,"abstract":"Grape seeds are abundant in wine production process. Liquefying it into polyether polyol has been proved a suitable utilization route. Although grape seed can be liquefied without fractionation, di...","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49351408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AC Impedance and Dielectric Studies of Biopolymer Electrolytes Based on I-Carrageenan 基于i -卡拉胶的生物聚合物电解质的交流阻抗和介电特性研究
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-09-07 DOI: 10.1680/JGRMA.21.00034
MahalakshmiThirupathi, SankareswariChandran, J. Krishnan
{"title":"AC Impedance and Dielectric Studies of Biopolymer Electrolytes Based on I-Carrageenan","authors":"MahalakshmiThirupathi, SankareswariChandran, J. Krishnan","doi":"10.1680/JGRMA.21.00034","DOIUrl":"https://doi.org/10.1680/JGRMA.21.00034","url":null,"abstract":"Biopolymer electrolytes based on I-Carrageenan with sodium trifluoromethane sulfonate (NaTf) were prepared via conventional solution casting technique. The biopolymer I-Carrageenan was fixed as 1 g...","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47798707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomass Based Plasticizer from Eleostearic Acid and its Effect on Plasticization, Mechanical Properties and Migration Resistance of Polyvinyl Chloride Film Eleostearic Acid生物质增塑剂及其对聚氯乙烯薄膜增塑性、力学性能和迁移阻力的影响
IF 1.9 4区 材料科学
Green Materials Pub Date : 2021-08-12 DOI: 10.1680/JGRMA.21.00007
ChuHong-ying, LiHua-bei, SunXiao-yan, ZhangYao-wang
{"title":"Biomass Based Plasticizer from Eleostearic Acid and its Effect on Plasticization, Mechanical Properties and Migration Resistance of Polyvinyl Chloride Film","authors":"ChuHong-ying, LiHua-bei, SunXiao-yan, ZhangYao-wang","doi":"10.1680/JGRMA.21.00007","DOIUrl":"https://doi.org/10.1680/JGRMA.21.00007","url":null,"abstract":"This study reported the synthesis of a kind of biomass based plasticizer epoxy eleostearic acid catechol ester(EEAE) originated from biomass resources eleostearic acid and catechol via esterificati...","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44717947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信