{"title":"Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life","authors":"Joanna Kurek","doi":"10.5772/intechopen.85400","DOIUrl":"https://doi.org/10.5772/intechopen.85400","url":null,"abstract":"In nature there are many natural compounds. From among many classes of naturally occurring organic compounds such as carbohydrates, lipids, proteins, amino acids, anthocyanins, flavonoids, and steroids, the one that seems to be quite special is alkaloids. What makes them special? They derived from amino acids and can be synthetized as secondary metabolites by plants and some animals. These compounds play an important role in living organisms. Alkaloids occurred to be extremely important for human beings for ages, besides they are secondary metabolites, what could suggest that they are useless. Alkaloids showed strong biological effects on animal and human organisms in very small doses. Alkaloids are present not only in human daily life in food and drinks but also as stimulant drugs. They showed anti-inflammatory, anticancer, analgesics, local anesthetic and pain relief, neuropharmacologic, antimicrobial, antifungal, and many other activities. Alkaloids are useful as diet ingredients, supplements, and pharmaceuticals, in medicine and in other applications in human life. Alkaloids are also important compounds in organic synthesis for searching new semisynthetic and synthetic compounds with possibly better biological activity than parent compounds.","PeriodicalId":127548,"journal":{"name":"Alkaloids - Their Importance in Nature and Human Life","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126970869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Tropane Derivatives","authors":"Abdulmajeed S H Alsamarrai","doi":"10.5772/intechopen.83382","DOIUrl":"https://doi.org/10.5772/intechopen.83382","url":null,"abstract":"This chapter refers to tropane alkaloid compounds best known for their occurrence, biosynthesis, and pharmacological properties in a subsection of the plant family Solanaceae including the Atropa , Duboisia , Hyoscyamus , and Scopolia species, together with their semisynthetic derivatives. Tropane alkaloids are useful as parasympatholytics that competitively antagonize acetylcholine. The bicyclic ring of tropane moiety forms the base of these alkaloids, and the largest number of tropane alkaloids is substituted on the atom C-3 of the tropane ring in the form of ester derivatives. Also, this chapter provides routes to previous methods for synthesizing tropane-2-yl derivatives as well as new routes to synthesize 2-( p -toluenesulphonyl) tropane-2-ene (anhydroecgonine). The new strategy for synthesizing anhydroecgonine might be helpful to adopt the best method of synthesizing tropane-2-yl derivatives.","PeriodicalId":127548,"journal":{"name":"Alkaloids - Their Importance in Nature and Human Life","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128377705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Food Glycoalkaloids: Distribution, Structure, Cytotoxicity, Extraction, and Biological Activity","authors":"A. Siddique, N. Brunton","doi":"10.5772/INTECHOPEN.82780","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82780","url":null,"abstract":"Glycoalkaloids (GA), generally occur as plant steroidal glycosides, are secondary metabolites produced in the leaves, flowers, roots, and edible parts including sprouts and skin of the plants of Solanaceae family. Many of the plants in this family have been stable parts of human diets for centuries, and thus, the occurrence of these compounds has been extensively studied mainly due to concerns regarding their toxicity. GAs are produced by plants as a resistance to challenges such as insects and pests but may also produce concentration-dependent toxic effects in humans. Postharvest conditions such as light, temperature, humidity, and processing conditions may also affect GA content in edible plants producing them. Since these compounds also possess biological properties such as anti-inflammatory, antimicrobial, and anticarcinogenic activities, it could be a useful strategy to use novel extraction techniques to maintaining bioactivities after extraction and simultaneously to reduce toxicity in the source plants. This chapter aims to describe alkaloids especially GAs commonly occurring in foods, their structure and toxicity, and postharvesting practices which influence alkaloid content and utilization of conventional and novel technologies to extract food alkaloids.","PeriodicalId":127548,"journal":{"name":"Alkaloids - Their Importance in Nature and Human Life","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129082960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hebert Jair Barrales-Cureño, C. Reyes, I. García, L. G. L. Valdez, A. D. Jesús, J. C. V. Ruiz, L. M. Herrera, M. C. C. Caballero, Jesús Antonio Salazar Magallón, J. E. Pérez, Jorge Montiel Montoya
{"title":"Alkaloids of Pharmacological Importance in Catharanthus roseus","authors":"Hebert Jair Barrales-Cureño, C. Reyes, I. García, L. G. L. Valdez, A. D. Jesús, J. C. V. Ruiz, L. M. Herrera, M. C. C. Caballero, Jesús Antonio Salazar Magallón, J. E. Pérez, Jorge Montiel Montoya","doi":"10.5772/INTECHOPEN.82006","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82006","url":null,"abstract":"Catharanthus roseus is a plant of the Apocynaceae family. It produces over 120 alkaloids, 70 of which are pharmacologically active. C. roseus produces vinblastine, utilized in treating Hodgkin ’ s disease; testicular tumors, breast carcinoma, choriocarcinoma, Kaposi sarcoma and Letterer-Siwe disorder. Vincristine is used to treat acute lymphocytic leukemia, lymphosarcoma, lympho-granulomatosis and in solid infant tumors. The preparation process of 1 kg of vincristine has a cost of US$ 3.5 million, while vinblastine has a cost of US$1 million. Therefore, 530 kg of dry leaves are necessary to produce 1 kg of vincristine and half a ton for getting 1 g of vinblastine. The high cost is due to the low concentrations in the aerial portion. Due to the high market value and its effectiveness in different medical treatments, this chapter deals with the pharmacological application of the C. roseus alkaloids.","PeriodicalId":127548,"journal":{"name":"Alkaloids - Their Importance in Nature and Human Life","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126557360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-Corrosive Properties of Alkaloids on Metals","authors":"Hui-jing Li, Weiwei Zhang, Yan‐Chao Wu","doi":"10.5772/INTECHOPEN.81749","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81749","url":null,"abstract":"Numerous organic inhibitors have been reported to be used for the corrosion inhibition of various metals, especially, the heterogeneous ring compounds bearing larger electronegativity atoms (i.e., N, O, S, and P), polar functional groups, and conjugated double bonds are the most effective inhibitors. Based on the concept of green chemistry, in recent years, the research of corrosion inhibitor has gradually extracted new environment-friendly corrosion inhibitor from natural animals and plants, because of its advantages in wide source, low cost, low toxicity and subse-quent treatment. Alkaloids such as papaverine, strychnine, quinine, nicotine, etc., have been studied as inhibitors for metals corrosion in corrosive media. This chapter aims to review the application of alkaloids for the corrosion inhibition of metals in corrosive media, and the development trend in this field is prospected. for in","PeriodicalId":127548,"journal":{"name":"Alkaloids - Their Importance in Nature and Human Life","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127518179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}