Christopher B. Freas, Dhara Shah, Robert W. Harrison
{"title":"Accuracy and Generalization of Deep Learning Applied to Large Scale Attacks","authors":"Christopher B. Freas, Dhara Shah, Robert W. Harrison","doi":"10.1109/ICCWorkshops50388.2021.9473824","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473824","url":null,"abstract":"Distributed denial of service attacks threaten the security and health of the Internet. Remediation relies on up-to-date and accurate attack signatures. Signature-based detection is relatively inexpensive computationally. Yet, signatures are inflexible when small variations exist in the attack vector. Attackers exploit this rigidity by altering their attacks to bypass the signatures. Our previous work revealed a critical problem with conventional machine learning models. Conventional models are unable to generalize on the temporal nature of network flow data to classify attacks. We thus explored the use of deep learning techniques on real flow data. We found that a variety of attacks could be identified with high accuracy compared to previous approaches. We show that a convolutional neural network can be implemented for this problem that is suitable for large volumes of data while maintaining useful levels of accuracy.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131165618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"User-Centric Multi-Dimensional Multiple Access in 6G Communications","authors":"Wudan Han, Jie Mei, Xianbin Wang","doi":"10.1109/ICCWorkshops50388.2021.9473721","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473721","url":null,"abstract":"The ever-increasing service heterogeneity and Quality-of-Service diversity call for multi-dimensional radio resource exploitation and utilization schemes in future 6-th generation (6G) wireless. To this end, we design a user-centric QoS provisioning framework assisted with multi-dimensional multiple access (MDMA) scheme, where two conflicting goals, i.e. user’s QoS preference and their utilization costs of multi-dimensional resources, are considered with different user-specific priority levels in the utility function for each user. To implement the user-centric MDMA with QoS fairness, the related problem is formulated as a Max-Min optimization. Due to the NP-hardness of the formulated problem, we first use bisection searching to examine the feasible solution set. Then, the tested feasible set is solved by addressing two sub-problems: user-subchannel mapping and power allocation, which are solved by matching theory and heuristic gradient descent algorithm. Simulation results verify the effectiveness of the proposed design that can significantly outperform the state-of-art scheme.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131341356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariella Särestöniemi, C. Pomalaza-ráez, K. Sayrafian-Pour, J. Iinatti
{"title":"In-Body Propagation at ISM and UWB Frequencies for Abdominal Monitoring Applications","authors":"Mariella Särestöniemi, C. Pomalaza-ráez, K. Sayrafian-Pour, J. Iinatti","doi":"10.1109/ICCWorkshops50388.2021.9473828","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473828","url":null,"abstract":"This paper presents the results of an in-body propagation study for abdominal implant communication using a bio-matched mini-horn antenna. The wireless signal coverage in the abdomen area at various ISM and UWB frequency bands are measured using electromagnetic simulations with a 3D anatomical voxel model. Power flow analysis is conducted to visualize propagation within the abdominal tissues at several frequencies. As an example, S-Parameters of the channel between a capsule endoscopy pill and an on-body receiver has been studied and channel attenuations at different frequencies are compared. Using the directional bio-matched antenna, it is observed that at 915 MHz the signal coverage in a horizontal plane is sufficient to almost include the whole small intestine. However, the depth of the coverage reduces substantially at higher frequency bands. This comparative analysis can provide some insight on the applicability of these frequencies for various abdominal monitoring applications. It can also provide some information about the required number and placement of the on-body receivers in order to ensure adequate signal reception.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131573832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Kong, Jiguang He, Y. Ai, S. Chatzinotas, B. Ottersten
{"title":"Channel Modeling and Analysis of Reconfigurable Intelligent Surfaces Assisted Vehicular Networks","authors":"L. Kong, Jiguang He, Y. Ai, S. Chatzinotas, B. Ottersten","doi":"10.1109/ICCWorkshops50388.2021.9473681","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473681","url":null,"abstract":"The new concept named reconfigurable intelligent surfaces (RIS) is becoming an appealing enabler due to its uniqueness with having low hardware complexity and low power consumption advantages simultaneously. In this paper, an RIS-aided vehicular Adhoc network (VANET) is considered, where the beacon vehicle is enabled with a passive RIS, the communication links between the beacon vehicle and client vehicle caused due to the multipath fading effects, are modeled with Fox’s H-function distribution. This paper first models the inter-vehicle links for the given system setup and then investigates the outage probability and effective rate as performance metrics. More specifically, the unsupervised expectation-maximization (EM) algorithm is consequently used to characterize the distribution of the received signal-to-noise ratio (SNR) at the client vehicle, which is modeled as the mixture of Gaussian (MoG) distribution. The accuracy of our approach is further validated with the Kolmogorov-Smirnov (KS) goodness of fit test. The MoG-based approach successfully tackles the RIS-enabled inter-vehicle communication with an easy, accurate, and tractable solution compared to the widely used central limit theorem (CLT) method. It leads to the closed-form outage probability and effective rate expressions.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134395849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Wu, Fuhui Zhou, Qi-hui Wu, Yang Huang, R. Hu
{"title":"Resource Allocation for IRS-Assisted Sensing-Enhanced Wideband CR Networks","authors":"Yuhang Wu, Fuhui Zhou, Qi-hui Wu, Yang Huang, R. Hu","doi":"10.1109/ICCWorkshops50388.2021.9473640","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473640","url":null,"abstract":"Spectrum-efficient and energy-efficient communication techniques are of crucial importance in the future generation wireless communication networks. An intelligent reflecting surface (IRS)-assisted wideband cognitive radio (CR) network is proposed under the sensing-enhanced spectrum sharing mechanism. In order to maximize the sum throughput of all the secondary users (SUs), the sensing time, transmit power, sub-carrier allocation, and IRS coefficients are jointly optimized. An effective alternating optimization algorithm is proposed to solve the challenging mix-integer non-convex optimization problem. Simulation results demonstrate that the IRS can significantly improve the spectrum efficiency of the CR network. Moreover, the tradeoff between the sensing time and spectrum efficiency is revealed.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133001535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact and Analysis of Spatial Correlation on Slotted Based MAC in UANs","authors":"Yan Wang, Fei Ji, Q. Guan","doi":"10.1109/ICCWorkshops50388.2021.9473789","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473789","url":null,"abstract":"The propagation delay is non-negligible in underwater acoustic networks (UANs) since the propagation speed is five orders of magnitude smaller than the speed of light. In this case, space and time factors are strongly coupled to determine the arrival time of a received packet, since the propagation delay depends on the spatial distribution of nodes in the network. Slotted based medium access control allows only packet sending at the beginning of a slot, which removes the time uncertainty to some extent and decouples space and time factors. More importantly, simultaneous transmissions are potential to be successful in UANs due to the difference of inter-node propagation delay. Thus, the slotted MAC is a promising approach to exploit the long propagation delay in UANs. However, different from terrestrial radio networks, packets sent at different slots may also collide at a receiver due to the long propagation delay, which is called inter-slot collisions. A guard time should be used to extend the length of the time slot, in order to remove inter-slot collisions. Considering that a long slot length may degrade the channel utilization, this paper tries to study the collisions with respect to the slot length in UANs. We find that the packet collision is highly determined by the maximal inter-node distance difference. We then derive the closed-form expression for the probability of successful transmissions in uniformly distributed network. The simulation results by NS3 verify the the trade-off between collision and channel utilization, and there exists an optimal slot length to maximize network throughput.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133219167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruikang Zhong, Xiao Liu, Yuanwei Liu, Di Zhang, Yue Chen
{"title":"Path Design for NOMA-Enhanced Robots: A Machine Learning Approach with Radio Map","authors":"Ruikang Zhong, Xiao Liu, Yuanwei Liu, Di Zhang, Yue Chen","doi":"10.1109/ICCWorkshops50388.2021.9473594","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473594","url":null,"abstract":"A communication enabled indoor intelligent robots (IRs) service framework is proposed, where the non-orthogonal multiple access (NOMA) technique is adopted to enhance the data rate and user fairness. Build on the proposed communication model, motions of IRs and the down-link power allocation policy are jointly optimized to maximize the mission efficiency and communication reliability of IRs. In an effort to find the optimal path for IRs from the initial point to their mission destinations, a novel reinforcement learning approach named deep transfer deterministic policy gradient (DT-DPG) algorithm is proposed. In order to save the training time and hardware costs, the radio map is investigated and provided to the agent as a virtual training environment. Our simulation demonstrates that 1) The participation of the NOMA technique effectively improves the communication reliability of IRs; 2) The radio map is qualified to be a virtual training environment, and its statistical channel state information improves training efficiency by about 30%; 3) The proposed algorithm is superior to the deep deterministic policy gradient (DDPG) algorithm in terms of the optimization performance, training time, and anti-local optimum ability.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"344 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124313104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi Meng, Shaohua Wu, Aimin Li, J. Jiao, Ning Zhang, Qinyu Zhang
{"title":"Analysis and Optimization of Spinal Codes over the BSC: from the AoI Perspective","authors":"Siqi Meng, Shaohua Wu, Aimin Li, J. Jiao, Ning Zhang, Qinyu Zhang","doi":"10.1109/ICCWorkshops50388.2021.9473643","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473643","url":null,"abstract":"In the ultra-reliable low-latency communications (URLLC) and the prospective 6G communications, the optimization of the age of information (AoI) will enhance the performance in the real-time status update situations. Spinal codes is a new type of rateless codes which can achieve the channel capacity over both the additive white Gaussian noise (AWGN) channels and the binary symmetric channels (BSC), so minimizing the AoI of Spinal codes will significantly decrease the latency of the real-time status update system. In this paper, we firstly study the AoI of a specific code—Spinal codes, and derive the upper bound of the AoI of Spinal codes. We also prove that obtaining a fine-grained rate in the transmission pattern will decrease the AoI of Spinal codes. Then we formulate the optimizing problem and derive that the incremental-tail-transmission pattern of Spinal codes is the optimal pattern to minimize the AoI. Simulation results demonstrate that the upper bound of the AoI of Spinal codes is tighter when the channel condition is better and the incremental-tail-transmission pattern of Spinal codes is the optimal pattern to achieve the lowest AoI compared with the puncture-based pattern and the pass-to-pass pattern.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"430 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122870001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhei Saito, Yuki Ito, Hirofumi Suganuma, K. Ogawa, F. Maehara
{"title":"Efficient Inter-mode Interference Cancellation Method for OAM Multiplexing in the Presence of Beam Axis Misalignment","authors":"Shuhei Saito, Yuki Ito, Hirofumi Suganuma, K. Ogawa, F. Maehara","doi":"10.1109/ICCWorkshops50388.2021.9473637","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473637","url":null,"abstract":"Orbital angular momentum (OAM) multiplexing suffers from inter-mode interference (IMI) due to a beam axis misalignment. However, the traditional IMI cancellation method assumes that the IMI rises from all OAM modes, which results in heavy computational loads. This paper proposes an efficient IMI cancellation method for OAM multiplexing in the presence of a beam axis misalignment. In the proposed method, considering that the interference from adjacent OAM modes is dominant in such a misalignment, IMI cancellation is performed by considering only the neighboring OAM modes. This method can reduce the computational cost while retaining the transmission performance. Moreover, the minimum mean square error (MMSE) is adopted as the equalizer criterion to suppress noise enhancement. The effectiveness of the proposed method as compared with the traditional IMI cancellation method is demonstrated in terms of the system capacity and computational complexity through computer simulations.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124156098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Hybrid Model for Task Dependent Scheduling in Container-based Edge Computing","authors":"Tingting Lv, Fanping Zeng, Guozhu Chen, Wenjuan Shu, Jingfei Shen, Weikang Zhang","doi":"10.1109/ICCWorkshops50388.2021.9473877","DOIUrl":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473877","url":null,"abstract":"In traditional edge computing, the task from the Internet of Things (IoT) is usually offloaded to edge server. It will be uploaded to the remote cloud if the edge server cannot process it. A task can be processed on the server, only if the server has configured the corresponding function program. However, each edge server can only configure a small number of functions due to the limited computing, storage, and bandwidth resources. Moreover, modern tasks from IoT devices become more and more diverse, which are also accompanied by complex dependencies. It increases the processing time overhead to the task processed in remote cloud due to huge transmission delay. In this paper, we design a container-based edge computing system, where a task can be executed on a server only if the server has configured the corresponding container, if not the server can fetch it from other edge servers or remote cloud. Based on the system, we propose a novel hybrid model, called CBASGA, with the aim to minimize the job complete time, which combines Chaos-based Beetle Antennae Search and Genetic Algorithm. Our experimental results show that the designed system reduces the average job completion time by 4.2% compared with the comparison system, and CBASGA reduces the average job completion time by at least 21.7% compared with baselines.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124407567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}