Geomechanics and Engineering最新文献

筛选
英文 中文
Experimental investigation for the use of tailings as paste-fill material through design of experiment 通过试验设计,对尾矿作为膏体充填材料进行试验研究
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.26.5.465
Omer Faruk Ugurlu, C. Ozturk
{"title":"Experimental investigation for the use of tailings as paste-fill material through design of experiment","authors":"Omer Faruk Ugurlu, C. Ozturk","doi":"10.12989/GAE.2021.26.5.465","DOIUrl":"https://doi.org/10.12989/GAE.2021.26.5.465","url":null,"abstract":"In the mining industry, significant progress and increased mineral production cause waste disposal issues which is one of the crucial problems in mining operations. It leads to both environmental and economic issues. Particularly, wastes from the production of metallic sulfide ore cause serious environmental pollution. In the last three decades, waste has been stored in underground openings in a controlled manner as paste-fill. Paste-fill is created by waste, water, and chemical additives. In this paper, two types of wastes were chosen to investigate the usability of tailings as paste-fill material. A lead and zinc underground mine was selected as a research site located in Balikesir, Turkey. First of all, several tests were conducted to analyze the physical, chemical, and mineralogical characteristics of paste-fill materials. Then, one of the design of experiment methods was used to create different mixtures of paste-fill specimens by changing the binder ratio and water content as input variables for four curing times. Finally, the strength properties were obtained as output variables, and an optimum mixture of paste-fill was determined. The results show that the tailings can be used as paste-fill material to achieve environmental and economic benefits and provide a safe working environment.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66479583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Consolidation settlement of soil foundations containing organic matters subjected to embankment load 含有机质地基在路堤荷载作用下的固结沉降
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.24.1.043
Ruiling Feng, Liyang Wang, K. Wei, Jiachen Zhao
{"title":"Consolidation settlement of soil foundations containing organic matters subjected to embankment load","authors":"Ruiling Feng, Liyang Wang, K. Wei, Jiachen Zhao","doi":"10.12989/GAE.2021.24.1.043","DOIUrl":"https://doi.org/10.12989/GAE.2021.24.1.043","url":null,"abstract":"Peatland is distributed in China widely, and organic matters in soil frequently induce problems in the construction and maintenance of highway engineering due to the high permeability and compressibility. In this paper, a selected site of Dali-Lijiang expressway was surveyed in China. A numerical model was built to predict the settlement of the foundation of the selected section employing the soft soil creep (SSC) model in PLAXIS 8.2. The model was subsequently verified by the result of field observance. Consequently, the parameters of 17 types of soils from different regions in China with organic contents varying from 1.1–74.9% were assigned to the numerical model to study the settlement characteristics. The calculated results showed that the duration of primary consolidation and proportion of primary settlement in the total settlement decreased with increasing organic content. Two empirical equations, for total consolidation settlement and secondary settlement, were proposed using multiple linear regression based on the calculated results from the numerical models. The analysis results of the significances of certain soil parameters demonstrated that the natural compression index, secondary compression index, cohesion and friction angle have significant linear relevance with both the total settlement and secondary settlement, while the initial coefficient of permeability exerts significant influence on the secondary settlement only.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66471744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests 粘土砂在大范围内的动力特性采用动态三轴和共振柱试验
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.24.2.105
E. Güler, K. B. Afacan
{"title":"Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests","authors":"E. Güler, K. B. Afacan","doi":"10.12989/GAE.2021.24.2.105","DOIUrl":"https://doi.org/10.12989/GAE.2021.24.2.105","url":null,"abstract":"Deformations in soils induced by dynamic loads cause damage to the structures above the soil layers. It is important for geotechnical engineering practice that how the soil behaves due to repeated loads and the necessary precautions to be taken accordingly. Turkey is one of the most important seismic regions in Europe and earthquake studies to be conducted in this area are intended to reduce the damage as a result of taking the necessary measures. To determine the properties of soils under dynamic loads, stress-controlled dynamic triaxial and resonant column tests can be performed. In this study, these experiments were implemented in the laboratory on the clayey sand soil samples obtained from Bilecik Sogut. To evaluate the effects of the confining pressure and rate of loading on the dynamic behavior of soils, samples were dynamically loaded by different rates at varying confining pressures. As a result, the changes in stress-strain properties of soils under dynamic loads were investigated. The alteration in behavior in terms of modulus reduction and damping ratios was obtained to vary a lot with the change of the lateral pressure on soil along with the frequency of the load.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66472023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Designing an innovative support system in loess tunnel 黄土隧道支护系统创新设计
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.24.3.253
Zhichao Wang, Yuantao Xie, J. Lai, Yongli Xie, Xulin Su, Yu-feng Shi, Chunxia Guo
{"title":"Designing an innovative support system in loess tunnel","authors":"Zhichao Wang, Yuantao Xie, J. Lai, Yongli Xie, Xulin Su, Yu-feng Shi, Chunxia Guo","doi":"10.12989/GAE.2021.24.3.253","DOIUrl":"https://doi.org/10.12989/GAE.2021.24.3.253","url":null,"abstract":"The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66472056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles 有覆盖层边坡对大直径嵌岩桩承载性能的影响
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.24.4.389
H. Xing, Hao Zhang, Liangliang Liu, Yong Luo
{"title":"Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles","authors":"H. Xing, Hao Zhang, Liangliang Liu, Yong Luo","doi":"10.12989/GAE.2021.24.4.389","DOIUrl":"https://doi.org/10.12989/GAE.2021.24.4.389","url":null,"abstract":"Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0o, 15o, 30o and 45o) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0o, 30o and 45o) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0o to 45o, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45o slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66472714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Geostatistical algorithm for evaluation of primary and secondary roughness 评价初级和次级粗糙度的地质统计学算法
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.24.4.359
H. Nasab, S. Karimi-Nasab, H. Jalalifar
{"title":"Geostatistical algorithm for evaluation of primary and secondary roughness","authors":"H. Nasab, S. Karimi-Nasab, H. Jalalifar","doi":"10.12989/GAE.2021.24.4.359","DOIUrl":"https://doi.org/10.12989/GAE.2021.24.4.359","url":null,"abstract":"Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and Rp increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66472966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of blasting impact on limestone of varying quality using FEA 用有限元法研究爆破对不同质量石灰石的影响
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.25.2.111
L. Dimitraki, B. Christaras, Nikolas Arampelos
{"title":"Investigation of blasting impact on limestone of varying quality using FEA","authors":"L. Dimitraki, B. Christaras, Nikolas Arampelos","doi":"10.12989/GAE.2021.25.2.111","DOIUrl":"https://doi.org/10.12989/GAE.2021.25.2.111","url":null,"abstract":"Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66476011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A similarity solution for undrained expansion of a cylindrical cavity in K₀-consolidated anisotropic soils K 0固结各向异性土体圆柱形空洞不排水膨胀的相似解
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.25.4.303
You-Quan Wang, Lin Li, Jingpei Li
{"title":"A similarity solution for undrained expansion of a cylindrical cavity in K₀-consolidated anisotropic soils","authors":"You-Quan Wang, Lin Li, Jingpei Li","doi":"10.12989/GAE.2021.25.4.303","DOIUrl":"https://doi.org/10.12989/GAE.2021.25.4.303","url":null,"abstract":"A rigorous and generic similarity solution is developed for assessment of the undrained expansion responses of a cylindrical cavity expansion in K₀-consolidated anisotropic soils. A K₀-consolidated anisotropic modified Cam-clay (K₀-AMCC) model that can represent the initial stress anisotropy and the effects of stress-induced anisotropy is used to model the soil behaviors during cavity expansion. All the seven basic unknowns, the three stress components, the pore water pressure, the particle velocity, the specific volume and the hardening parameter, are reduced to the functions of a dimensionless radial coordinate and are taken as coupled variables to formulate the problem. The governing equations are formulated by making use of the equilibrium equation, the constitutive equation, the consistency condition, the continuity condition and the undrained condition, which are then solved as an initial value problem. The proposed rigorous similarity solution is compared with some well-documented rigorous solutions to validate the solution and to highlight the special expansion responses in anisotropic soils. The results reveal that the present solution can yield more predictions for cavity expansion problems in soils with initial anisotropic stresses.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66476953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Predicting the unconfined compressive strength of granite using only two non-destructive test indexes 仅用两种无损检测指标预测花岗岩无侧限抗压强度
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.25.4.317
D. J. Armaghani, A. Mamou, Chrysanthos Maraveas, P. Roussis, Vassilis G. Siorikis, A. Skentou, P. G. Asteris
{"title":"Predicting the unconfined compressive strength of granite using only two non-destructive test indexes","authors":"D. J. Armaghani, A. Mamou, Chrysanthos Maraveas, P. Roussis, Vassilis G. Siorikis, A. Skentou, P. G. Asteris","doi":"10.12989/GAE.2021.25.4.317","DOIUrl":"https://doi.org/10.12989/GAE.2021.25.4.317","url":null,"abstract":"This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66476967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Dynamical behavior of the orthotropic elastic material using an analytical solution 正交各向异性弹性材料动力学行为的解析解
IF 3.2 3区 工程技术
Geomechanics and Engineering Pub Date : 2021-01-01 DOI: 10.12989/GAE.2021.25.4.331
Mohammed A. Balubaid, H. Abdo, E. Ghandourah, S. Mahmoud
{"title":"Dynamical behavior of the orthotropic elastic material using an analytical solution","authors":"Mohammed A. Balubaid, H. Abdo, E. Ghandourah, S. Mahmoud","doi":"10.12989/GAE.2021.25.4.331","DOIUrl":"https://doi.org/10.12989/GAE.2021.25.4.331","url":null,"abstract":"In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66476974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信