A. Franzluebbers, D. Hunt, G. Telford, S. Bittman, Q. Ketterings
{"title":"INTEGRATED CROP-LIVESTOCK SYSTEMS: LESSONS FROM NEW YORK, BRITISH COLUMBIA, AND THE SOUTH-EASTERN UNITED STATES","authors":"A. Franzluebbers, D. Hunt, G. Telford, S. Bittman, Q. Ketterings","doi":"10.15302/j-fase-2020365","DOIUrl":"https://doi.org/10.15302/j-fase-2020365","url":null,"abstract":"Livestock production in the United States (US) and Canada is diverse, but shows a common trend in most livestock sectors toward fewer farms producing the majority of animal products despite a large number of farms still small in production scale. The migration to larger and more concentrated animal feeding operations in beef finishing and poultry, swine, and dairy production allows processors to streamline supplies to meet market demand for abundant, low-cost livestock products, whether that be for packaged meat, dairy products, or eggs. With concentration of livestock operations comes the challenge of managing manures. When sufficient land is available and nutrients are needed, livestock manure is an excellent nutrient source and land application is the preferred method of recycling this resource. However, when livestock production is constrained in a geographical area and animal densities are high, manure may become an environmental liability with potentially greater risk for runoff and leaching of nutrients, emission of odors, ammonia, and greenhouse gases, and release to the environment of pathogens and chemicals of emerging concern. Addressing these challenges now and into the future requires learning from mistakes and adopting successful approaches. We describe different levels of integration between livestock and crop producers in New York, British Columbia, and the south-eastern US as learning opportunities to improve economic and environmental sustainability. Examples show that effective solutions should recognize (1) manure has value and is not just a cost, (2) farmers, farm advisors, extension educators, nutrient management planners, crop advisors, nutritionists, state agency personnel, regulators, and university researchers need to be active participants in development of solutions, and (3) change to a sustainable future requires a combination of government regulation and outcome-based incentives.","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47037443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"INTEGRATING CROP AND LIVESTOCK PRODUCTION SYSTEMS—TOWARDS AGRICULTURAL GREEN DEVELOPMENT","authors":"Y. Hou, O. Oenema, Fusuo Zhang","doi":"10.15302/J-FASE-2021384","DOIUrl":"https://doi.org/10.15302/J-FASE-2021384","url":null,"abstract":"and systems, various modelling impacts of emission mitigation measures and manure treatment technologies on agronomic, environmental and economic performance of integrated crop-livestock systems at farm, regional and national scales. pilot to explore the impacts of feeding strategies in combination of diverse manure management measures on nitrogen and phosphorus dynamics in farms. peer-reviewed Global Change Biology and Environmental Science & Technology management","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44660897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Rufino, C. Gachene, R. Diogo, J. Hawkins, A. Onyango, O. Sanogo, I. Wanyama, G. Yesuf, D. Pelster
{"title":"SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA","authors":"M. Rufino, C. Gachene, R. Diogo, J. Hawkins, A. Onyango, O. Sanogo, I. Wanyama, G. Yesuf, D. Pelster","doi":"10.15302/j-fase-2020362","DOIUrl":"https://doi.org/10.15302/j-fase-2020362","url":null,"abstract":"Crop-livestock farms across Africa are highly variable due to in agroecological and socioeconomic factors, the latter shaping the demand and supply of livestock products. Crop-livestock farms in Africa in the 21st century are very different from most mixed farms elsewhere in the world. African crop-livestock farms are smaller in size, have fewer livestock, lower productivity and less dependency on imported feed than farms in most countries of Europe, the Americas and the intensive agricultural systems of Asia. This paper discusses the role African crop-livestock farms have in the broader socio-agricultural economy, and how these are likely to change adapting to pressures brought on by the intensification of food systems. This intensification implies increasing land productivity (more food per hectare), often leading to more livestock heads per farm, producing fertilized feeds in croplands and importing feed supplements from the market. This discussion includes (1) the links between crop yields, soil fertility and crop-livestock integration, (2) the increasing demand for livestock products and the land resources required to meet to this demand, and (3) the opportunities to integrate broader societal goals into the development of crop-livestock farms. There is ample room for development of crop-livestock farms in Africa, and keeping integration as part of the development will help prevent many of the mistakes and environmental problems related to the intensification of livestock production observed elsewhere in the world. This development can integrate biodiversity, climate change adaptation and mitigation to the current goals of increasing productivity and food security. The inclusion of broader goals could help farmers access the level of finance required to implement changes.","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46284576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LEVERAGING LIVESTOCK TO PROMOTE A CIRCULAR FOOD SYSTEM","authors":"Z. Dou","doi":"10.15302/j-fase-2020370","DOIUrl":"https://doi.org/10.15302/j-fase-2020370","url":null,"abstract":"Livestock provide multifaceted services to human societies worldwide. In developing countries, they are crucial assets and safety net for rural poor, and they provide nutrients-dense food to nourish people. In developed economies, growth in demand for animal-derived food is slowing while attention is growing over the role of livestock farming in an enhanced circular food system for sustainability. This analysis, focusing on the modern food systems in developed countries, aims to highlight the unique function of livestock that helps people re-harvest and upcycle crop and food residues generated along the food chain that are otherwise unfit for human consumption. First, human-unusable crop and food residue materials are described in three broad categories based on their characteristics and potential feeding attributes; the magnitude of biomass materials that are already used in routine animal feeding as well as residues that remain as underutilized resources are illustrated using the USA as an example. Then, the research and technology development critically needed for the future is discussed. As the world strives to produce more food with smaller environmental and climate footprints, upcycling the residual biomass via livestock for food production presents a viable pathway toward improved resource use, reduced pollution and enhanced food system efficiency. The primary function of agriculture is to produce food, fiber and fuel to serve human needs. Livestock farming is an important component of the modern agriculture and food systems with a double role to play. One is obvious—to produce nutrient-dense foods such as meat, milk, and eggs for people. Such foods are particularly critical to the world’s poor as the main source of essential proteins and micronutrients for reducing stunting and wasting[1]. The other role is not as obvious to the general public but equally, if not more, important—livestock animals can feed on crop and food residues that are unfit for humans to produce meat, milk, and eggs, thereby helping to maximize the beneficial use of biomass already produced and also to lower resource, environmental and climate burdens. The latter function is the essence of a circular food system that aims to extract maximal value from existing biomass to serve human needs. As the world strives to produce more food to feed the growing population, particularly the surging demand for animal-derived food in developing countries, leveraging livestock to enhance food system efficiency and promote a circular food system is imperative. The modern food and beverage systems generate large amounts of residual biomass from farm to fork. For example, 50%–70% of orange fruit is left in the pulp when making juice. In the USA, 4–7 Mt of oranges are used for juice-making each year[2], leaving 2–4 Mt in the residual pulp[3]. Another example is grain milling; the process leaves behind up to 25% residues. Annual mill residues amount to about 11 Mt in the USA[4]. Further","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67323301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunli Zhang, Taotao Wang, L. Jing, Danqiu Zhang, Qingmin Xie, S. Munir, YE Jie, Li Hanxia, LU Yongen, Changxian Yang, B. Ouyang, Yuyang Zhang, Junhong Zhang, Zhibiao, Ye
{"title":"FUNCTIONAL GAIN OF FRUIT NETTED-CRACKING IN AN INTROGRESSION LINE OF TOMATO WITH HIGHER EXPRESSION OF THE FNC GENE","authors":"Chunli Zhang, Taotao Wang, L. Jing, Danqiu Zhang, Qingmin Xie, S. Munir, YE Jie, Li Hanxia, LU Yongen, Changxian Yang, B. Ouyang, Yuyang Zhang, Junhong Zhang, Zhibiao, Ye","doi":"10.15302/j-fase-2020374","DOIUrl":"https://doi.org/10.15302/j-fase-2020374","url":null,"abstract":"Fruit cracking is a major disorder that affects the integrity of fruit and reduces the commercial value of tomato and other fleshy fruit. Here, we have found a novel fruit ‘netted-cracking’ (FNC) phenotype in tomato introgression line IL4-4 which is present in neither the donor parent (LA0716) nor the receptor parent (M82). An F 2 population was generated by crossing IL4-4 with M82 to genetically characterize the FNC gene and this showed that a single dominant gene determined fruit netted-cracking. Further map-based cloning narrowed down the FNC locus to a 230 kb region on chromosome 4. Sequencing and annotation analysis show that FNC (Solyc04 g082540) was the most likely candidate gene. Functional characterization of FNC by overexpressing FNC AC and FNC IL4-4 resulted in the fruit netted-cracking phenotype, suggesting that the FNC transcript level results in the functional gain of fruit netted-cracking. These findings were further confirmed by FNC ortholog in netted-cracking pepper and melon, indicating a common regulatory mechanism in different plant species. Furthermore, cytoplasm and nucleus-localized FNC indicates increased expression of genes involved in suberin, lignin, lipid transport and cell wall metabolism. These findings provide novel genetic insights into fruit netted-cracking and offer a way to promote molecular improvement toward cracking resistant cultivars. loci","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67323409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Xia, Wen Wang, K. Xie, W. Xiaomeng, Xiuxin Deng, W. Jude, Grosser, Wenwu Guo
{"title":"UNREDUCED MEGAGAMETOPHYTE FORMATION VIA SECOND DIVISION RESTITUTION CONTRIBUTES TO TETRAPLOID PRODUCTION IN INTERPLOIDY CROSSES WITH 'ORAH' MANDARIN (CITRUSRETICULATA)","authors":"Q. Xia, Wen Wang, K. Xie, W. Xiaomeng, Xiuxin Deng, W. Jude, Grosser, Wenwu Guo","doi":"10.15302/j-fase-2021385","DOIUrl":"https://doi.org/10.15302/j-fase-2021385","url":null,"abstract":"ABSTRACT Seedless fruits are desirable in the citrus fresh fruit market. Triploid production via diploid × tetraploid interploidy crosses is thought to be the most efficient and widely-used strategy for the breeding of seedless citrus. Although ‘Orah’ mandarin has desirable organoleptic qualities, seeds in the fruits weaken its market competitiveness. To produce new seedless cultivars that are similar to ‘Orah’ mandarin, we performed three 2x × 4x crosses using ‘Orah’ mandarin as the seed parent to regenerate triploid plantlets. A total of 182 triploid and 36 tetraploid plantlets were obtained. By analyzing their genetic origins using nine novel single nucleotide polymorphism (SNP) markers, all of the triploids and tetraploids derived from these three crosses were proven to be hybrids. Also, we demonstrated that 2n megagametophyte formation in ‘Orah’ mandarin result in tetraploid production in these three interploidy crosses. These tetraploid plantlets were genotyped using eight pericentromeric SNP markers and nine centromere distal SNP markers. Based on the genotypes of the 2n megagametophytes, the parental heterozygosity rates in 16 SNP loci and all 2n megagametophytes were less than 50%, indicating that second division restitution was the mechanism underlying 2n megagametophyte formation at both the population and individual levels. These triploid hybrids enrich the germplasm available for seedless breeding. Moreover, the tetraploid hybrids are valuable as parents for ploidy breeding for the production of seedless citrus fruits.","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67323571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CHARACTERISTICS OF HERBIVORY/WOUND-ELICITED ELECTRICAL SIGNAL TRANSDUCTION IN TOMATO","authors":"Huang Chaoyi, Siqi Duan, Jie Zhou, Yuan Jingquan","doi":"10.15302/j-fase-2021395","DOIUrl":"https://doi.org/10.15302/j-fase-2021395","url":null,"abstract":"ABSTRACT Electrical signals commonly occur in plants in response to various environmental changes and have a dominant function in plant acclimation. The transduction of wound-elicited electrical signals in the model plant species Arabidopsis has been characterized but the characteristics of electrical signal transduction in response to herbivory or wounding in crop species remain unknown. Here, the features of electrical signals elicited by insect herbivory and wounding in tomato were investigated. Unlike those in Arabidopsis , wounding tomato leaves did not cause leaf-to-leaf electrical signal transduction. In contrast, electrical signals elicited in response to petiole wounding were stronger and more strongly transduced. Lea fl et wounding also activated electrical signal transduction and jasmonic acid (JA) signaling within the whole compound leaf. It was also demonstrated that tomato glutamate receptor-like 3.3 (GLR3.3) and GLR3.5 mediated lea fl et-to-lea fl et electrical signal transduction. Herbivory-induced","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67324779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RESEARCH ON AND APPLICATION OF CROP PEST MONITORING AND EARLY WARNING TECHNOLOGY IN CHINA","authors":"","doi":"10.15302/j-fase-2021411","DOIUrl":"https://doi.org/10.15302/j-fase-2021411","url":null,"abstract":"","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67325748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EVALUATING QUINOA LODGING RISK AND YIELD UNDER DIFFERENT IRRIGATION THRESHOLDS, NITROGEN RATES AND PLANTING DENSITIES IN NORTH-WESTERN CHINA","authors":"","doi":"10.15302/j-fase-2021430","DOIUrl":"https://doi.org/10.15302/j-fase-2021430","url":null,"abstract":"","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67326137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuxin Deng, Yujin Hao, Jingquan Yu, Qixiang Zhang, Zhong-pei Liu
{"title":"HIGHLIGHTS OF THE SPECIAL ISSUE ON “HORTICULTURE RESEARCH FOR GREEN AND SUSTAINABLE DEVELOPMENT”","authors":"Xiuxin Deng, Yujin Hao, Jingquan Yu, Qixiang Zhang, Zhong-pei Liu","doi":"10.15302/J-FASE-2021396","DOIUrl":"https://doi.org/10.15302/J-FASE-2021396","url":null,"abstract":"","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67324486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}