T. Torsvik, H. Svensen, B. Steinberger, D. Royer, D. Jerram, Morgan T. Jones, M. Domeier
{"title":"Mantle Convection and Surface Expressions","authors":"T. Torsvik, H. Svensen, B. Steinberger, D. Royer, D. Jerram, Morgan T. Jones, M. Domeier","doi":"10.1002/9781119528609","DOIUrl":"https://doi.org/10.1002/9781119528609","url":null,"abstract":"Most hotspots, kimberlites, and large igneous provinces (LIPs) are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have been quasi-stable for hundreds of millions years and plume heads rise through the mantle in about 30Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating andmodifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown, but we find no clear relationship between LIPs and postemplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time-scales. Subduction flux estimates correlate well with zircon age frequency distributions through time. This suggest that continental arc activity may have played an important role in regulating long-term climate change (greenhouse vs. icehouse conditions) but only the Permo-Carboniferous icehouse show a clear correlation with the zircon record.","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78314328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magma Storage at Ocean Islands","authors":"A. Barker, Elin Rydeblad, Sónia Silva","doi":"10.1002/9781119564485.CH3","DOIUrl":"https://doi.org/10.1002/9781119564485.CH3","url":null,"abstract":"The Cape Verde archipelago is a group of Ocean Islands in the Central Atlantic that forms two chains of islands trending Northwest and Southwest. Several of the islands are considered to be volcani...","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"156 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89085247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogeology, Chemical Weathering, and Soil Formation","authors":"","doi":"10.1002/9781119563952","DOIUrl":"https://doi.org/10.1002/9781119563952","url":null,"abstract":"","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76811764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large Igneous Provinces","authors":"Brian Kendall, Morten B. Andersen, J. Owens","doi":"10.1002/9781119507444","DOIUrl":"https://doi.org/10.1002/9781119507444","url":null,"abstract":"Large igneous provinces (LIPs) have occurred episodically throughout Earth’s history, with the most severe events causing profound disturbances to Earth’s climate and biosphere that likely influenced the course of metazoan evolution. One environmental perturbation caused by LIP emplacement is a change in global oceanic redox conditions. The uranium (U) and molybdenum (Mo) isotope systems are relatively established tracers of global oceanic redox conditions, particularly for the extent of anoxic and euxinic seafloor, whereas the thallium (Tl) isotope system is emerging as a tracer for the extent of well‐oxygenated seafloor characterized by manganese (Mn) oxide burial. In this review, we discuss how these metal isotope systems can be used to infer changes to global oceanic redox conditions through the cascade of environmental perturbations caused by LIP emplacement, focusing on the three events (Cenomanian‐Turonian, Toarcian, and Permian‐Triassic) that have received the most attention. Existing isotope mass‐balance models for these metals indicate an expansion of oceanic anoxia and euxinia (by ~1 to 2 orders of magnitude greater than the modern ocean) accompanied LIP emplacement during these events. Future studies, ideally utilizing a multi‐isotope approach on the same samples and coupled with improvements in oceanic metal isotope mass balances and modeling, are expected to provide more precise and accurate estimates of the spatiotemporal extent of oceanic anoxia/euxinia expansion and how this relates to the magnitude, location, and style of LIP events. 13 1 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada 2 School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK 3 Department of Earth, Ocean and Atmospheric Science and National High Magnet Field Laboratory, Florida State University, Tallahassee, Florida, USA 306 LARGE IGNEOUS PROVINCES balance models to link and infer changes in the global extent of seafloor covered by oxic versus anoxic (euxinic and noneuxinic) waters. For ancient LIP events with negligible open‐ocean seafloor records, changes in global oceanic redox conditions must be inferred from the metal isotope ratios of continental margin sedimentary rocks. Differences in marine input/output fluxes, ocean residence times, and isotope fractionation mechanisms for Mo, U, and Tl mean that each metal provides its own perspective on changes in oceanic redox conditions during LIP emplacement. Because Mo is highly insoluble in sulfidic environments and is thus enriched in euxinic sediments (Helz et al., 1996; Erickson & Helz, 2000; Scott & Lyons, 2012), Mo isotope data from euxinic organic‐rich mudrocks are typically used to infer the global extent of seafloor where dissolved sulfide occurs in the water column and sediments (e.g., Arnold et al., 2004; Dahl et al., 2011; Goldberg et al., 2016). Uranium is insoluble in its reduced form and, in contrast to Mo, does not require dissolved s","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"7 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78268142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crustal Magmatic System Evolution","authors":"M. Masotta, C. Beier, S. Mollo","doi":"10.1002/9781119564485","DOIUrl":"https://doi.org/10.1002/9781119564485","url":null,"abstract":"","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91295377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Jarvis, M. Pistone, Alexia Secretan, J. Blundy, K. Cashman, H. Mader, L. Baumgartner
{"title":"Crystal and Volatile Controls on the Mixing and Mingling of Magmas","authors":"P. Jarvis, M. Pistone, Alexia Secretan, J. Blundy, K. Cashman, H. Mader, L. Baumgartner","doi":"10.1002/essoar.10504686.1","DOIUrl":"https://doi.org/10.1002/essoar.10504686.1","url":null,"abstract":"The mixing and mingling of magmas of different compositions are important geological processes. They produce various distinctive textures and geochemical signals in both plutonic and volcanic rocks...","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78750035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}