arXiv: Emerging Technologies最新文献

筛选
英文 中文
Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange 随机电阻-随机温度Kirchhoff-law-Johnson-noise (RRRT-KLJN)密钥交换
arXiv: Emerging Technologies Pub Date : 2015-09-01 DOI: 10.1515/mms-2016-0007
L. Kish, C. Granqvist
{"title":"Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange","authors":"L. Kish, C. Granqvist","doi":"10.1515/mms-2016-0007","DOIUrl":"https://doi.org/10.1515/mms-2016-0007","url":null,"abstract":"We introduce two new Kirchhoff-law-Johnson-noise (KLJN) secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR-) KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random-Resistor-Random-Temperature (RRRT-) KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.","PeriodicalId":124480,"journal":{"name":"arXiv: Emerging Technologies","volume":"101 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120813340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@
arXiv: Emerging Technologies Pub Date : 1900-01-01 DOI: 10.4213/DM1365
Дмитрий Владимирович Закаблуков, D. V. Zakablukov
{"title":"О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@","authors":"Дмитрий Владимирович Закаблуков, D. V. Zakablukov","doi":"10.4213/DM1365","DOIUrl":"https://doi.org/10.4213/DM1365","url":null,"abstract":"The paper discusses the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The Shannon gate complexity function $L(n, q)$ for a reversible circuit, implementing a Boolean transformation $fcolon mathbb Z_2^n to mathbb Z_2^n$, is defined as a function of $n$ and the number of additional inputs $q$. The general lower bound $L(n,q) geq frac{2^n(n-2)}{3log_2(n+q)} - frac{n}{3}$ for the gate complexity of a reversible circuit is proved. An upper bound $L(n,0) leqslant 3n2^{n+4}(1+o(1)) mathop / log_2n$ for the gate complexity of a reversible circuit without additional inputs is proved. An upper bound $L(n,q_0) lesssim 2^n$ for the gate complexity of a reversible circuit with $q_0 sim n2^{n-o(n)}$ additional inputs is proved.","PeriodicalId":124480,"journal":{"name":"arXiv: Emerging Technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122113762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信