О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@

Дмитрий Владимирович Закаблуков, D. V. Zakablukov
{"title":"О сложности обратимых схем,состоящих из функциональных элементов NOT, CNOT и 2-CNOT@@@","authors":"Дмитрий Владимирович Закаблуков, D. V. Zakablukov","doi":"10.4213/DM1365","DOIUrl":null,"url":null,"abstract":"The paper discusses the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The Shannon gate complexity function $L(n, q)$ for a reversible circuit, implementing a Boolean transformation $f\\colon \\mathbb Z_2^n \\to \\mathbb Z_2^n$, is defined as a function of $n$ and the number of additional inputs $q$. The general lower bound $L(n,q) \\geq \\frac{2^n(n-2)}{3\\log_2(n+q)} - \\frac{n}{3}$ for the gate complexity of a reversible circuit is proved. An upper bound $L(n,0) \\leqslant 3n2^{n+4}(1+o(1)) \\mathop / \\log_2n$ for the gate complexity of a reversible circuit without additional inputs is proved. An upper bound $L(n,q_0) \\lesssim 2^n$ for the gate complexity of a reversible circuit with $q_0 \\sim n2^{n-o(n)}$ additional inputs is proved.","PeriodicalId":124480,"journal":{"name":"arXiv: Emerging Technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/DM1365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper discusses the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The Shannon gate complexity function $L(n, q)$ for a reversible circuit, implementing a Boolean transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$, is defined as a function of $n$ and the number of additional inputs $q$. The general lower bound $L(n,q) \geq \frac{2^n(n-2)}{3\log_2(n+q)} - \frac{n}{3}$ for the gate complexity of a reversible circuit is proved. An upper bound $L(n,0) \leqslant 3n2^{n+4}(1+o(1)) \mathop / \log_2n$ for the gate complexity of a reversible circuit without additional inputs is proved. An upper bound $L(n,q_0) \lesssim 2^n$ for the gate complexity of a reversible circuit with $q_0 \sim n2^{n-o(n)}$ additional inputs is proved.
本文讨论了由NOT、CNOT和2-CNOT门组成的可逆电路的门复杂度。实现布尔变换$f\colon \mathbb Z_2^n \to \mathbb Z_2^n$的可逆电路的香农门复杂度函数$L(n, q)$被定义为$n$和附加输入数$q$的函数。证明了可逆电路门复杂度的一般下界$L(n,q) \geq \frac{2^n(n-2)}{3\log_2(n+q)} - \frac{n}{3}$。证明了无附加输入可逆电路的门复杂度的上界$L(n,0) \leqslant 3n2^{n+4}(1+o(1)) \mathop / \log_2n$。证明了具有$q_0 \sim n2^{n-o(n)}$附加输入的可逆电路的门复杂度的上界$L(n,q_0) \lesssim 2^n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信