Fluids最新文献

筛选
英文 中文
Marangoni Bursting: Insight into the Role of the Thermocapillary Effect in an Oil Bath 马兰戈尼破裂:洞察热毛细效应在油浴中的作用
Fluids Pub Date : 2023-09-20 DOI: 10.3390/fluids8090255
Michalina Ślemp, Andrzej Miniewicz
{"title":"Marangoni Bursting: Insight into the Role of the Thermocapillary Effect in an Oil Bath","authors":"Michalina Ślemp, Andrzej Miniewicz","doi":"10.3390/fluids8090255","DOIUrl":"https://doi.org/10.3390/fluids8090255","url":null,"abstract":"Marangoni bursting describes the spontaneous spread of a droplet of a binary mixture of alcohol/water deposited on a bath of oil, followed by its fast spontaneous fragmentation into a large number of smaller droplets in a self-similar way. Several papers have aimed to describe the physical phenomena underlying this spectacular phenomenon, in which two opposite effects, solutal and thermal Marangoni stresses, play competitive roles. We performed investigations of the Marangoni bursting phenomenon, paying attention to the surface temperature changes during bursting and after it. Fragmentation instabilities were monitored using a thermal camera for various initial alcohol/water compositions and at different stages of the process. We uncovered the role of thermocapillary Marangoni flows within the more viscous oil phase that are responsible for outward and inward shrinking of the periphery circle at the final stage of the phenomenon, enabling a more comprehensive understanding of the thermal Marangoni effect. Simulations of the Marangoni thermocapillary effect in an oil bath by solving coupled Navier–Stokes and heat transport equations using the COMSOL Multiphysics software platform support our experimental observations.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136372995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling of Peristaltic Pumps with Respect to Viscoelastic Tube Material Properties and Fatigue Effects 基于粘弹性管材料特性和疲劳效应的蠕动泵建模
Fluids Pub Date : 2023-09-19 DOI: 10.3390/fluids8090254
Marco Hostettler, Raphael Grüter, Simon Stingelin, Flavio De Lorenzi, Rudolf M. Fuechslin, Cyrill Jacomet, Stephan Koll, Dirk Wilhelm, Gernot K. Boiger
{"title":"Modelling of Peristaltic Pumps with Respect to Viscoelastic Tube Material Properties and Fatigue Effects","authors":"Marco Hostettler, Raphael Grüter, Simon Stingelin, Flavio De Lorenzi, Rudolf M. Fuechslin, Cyrill Jacomet, Stephan Koll, Dirk Wilhelm, Gernot K. Boiger","doi":"10.3390/fluids8090254","DOIUrl":"https://doi.org/10.3390/fluids8090254","url":null,"abstract":"Peristaltic pump technology is widely used wherever relatively low, highly accurately dosed volumetric flow rates are required and where fluid contamination must be excluded. Thus, typical fields of application include food, pharmaceuticals, medical technology, and analytics. In certain cases, when applied in conjunction with polymer-based tubing material, supplied peristaltic flow rates are reported to be significantly lower than the expected set flow rates. Said flow rate reductions are related to (i) the chosen tube material, (ii) tube material fatigue effects, and (iii) the applied pump frequency. This work presents a fast, dynamic, multiphysics, 1D peristaltic pump solver, which is demonstrated to capture all qualitatively relevant effects in terms of peristaltic flow rate reduction within linear peristaltic pumps. The numerical solver encompasses laminar fluid dynamics, geometric restrictions provided by peristaltic pump operation, as well as viscoelastic tube material properties and tube material fatigue effects. A variety of validation experiments were conducted within this work. The experiments point to the high degree of quantitative accuracy of the novel software and qualify it as the basis for elaborating an a priori drive correction.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"206 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135106812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fluid and Particle Dynamics Analyses for Prediction of Airborne Infection/Spread Risks in Highway Buses: A Parametric Study 高速公路客车空气传染/传播风险预测的计算流体和粒子动力学分析:参数化研究
Fluids Pub Date : 2023-09-17 DOI: 10.3390/fluids8090253
Sung-Jun Yoo, Shori Yamauchi, Hyungyu Park, Kazuhide Ito
{"title":"Computational Fluid and Particle Dynamics Analyses for Prediction of Airborne Infection/Spread Risks in Highway Buses: A Parametric Study","authors":"Sung-Jun Yoo, Shori Yamauchi, Hyungyu Park, Kazuhide Ito","doi":"10.3390/fluids8090253","DOIUrl":"https://doi.org/10.3390/fluids8090253","url":null,"abstract":"Highway buses are used in a wide range of commuting services and in the tourist industry. The demand for highway bus transportation has dramatically increased in the recent post-pandemic world, and airborne transmission risks may increase alongside the demand for highway buses, owing to a higher passenger density in bus cabins. We developed a numerical prediction method for the spatial distribution of airborne transmission risks inside bus cabins. For a computational fluid dynamics analyses, targeting two types of bus cabins, sophisticated geometries of bus cabins with realistic heating, ventilation, and air-conditioning were reproduced. The passengers in bus cabins were reproduced using computer-simulated persons. Airflow, heat, and moisture transfer analysis were conducted based on computational fluid dynamics, to predict the microclimate around passengers and the interaction between the cabin climate and passengers. Finally, droplet dispersion analysis using the Eulerian–Lagrangian method and an investigation of the spatial distribution of infection/spread risks, assuming SARS-CoV-2 infection, were performed. Through parametric analyses of passive and individual countermeasures to reduce airborne infection risks, the effectiveness of countermeasures for airborne infection was discussed. Partition installation as a passive countermeasure had an impact on the human microclimate, which decreased infection risks. The individual countermeasure, mask-wearing, almost completely prevented airborne infection.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135257764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Body Heat Loss on Temperature and Velocity Fields in a Whole-Body Cryotherapy Chamber 人体热损失对全身冷冻室内温度场和速度场的影响
Fluids Pub Date : 2023-09-16 DOI: 10.3390/fluids8090252
Rim Elfahem, Bastien Bouchet, Boussad Abbes, Guillaume Polidori, Fabien Beaumont
{"title":"Influence of Body Heat Loss on Temperature and Velocity Fields in a Whole-Body Cryotherapy Chamber","authors":"Rim Elfahem, Bastien Bouchet, Boussad Abbes, Guillaume Polidori, Fabien Beaumont","doi":"10.3390/fluids8090252","DOIUrl":"https://doi.org/10.3390/fluids8090252","url":null,"abstract":"This study aims to investigate the impact of body heat loss on the thermal and aerodynamic conditions in a whole-body cryotherapy chamber. The underlying hypothesis is that the heat generated by the human body alters the thermal and aerodynamic environment inside the cabin. A numerical study was conducted to test this hypothesis and analyze the thermodynamic exchanges between the human body and the cabin during a 3 min whole-body cryotherapy session. The computational fluid dynamics (CFD) approach was used to study the unsteady heat transfer between the human body and the interior of the cryotherapy cabin. A thermal boundary condition, based on a mathematical model developed from experimental data, was applied to simulate skin cooling kinetics over time. The post-processing of the 3D results, including temperature, velocity fields, and thermal flux maps at the body surface, provided insight into the thermo-convective mechanisms involved in a whole-body cryotherapy session. The study found that body heat loss significantly affects the temperature fields inside the cabin, leading to global modifications of the aeraulic and thermal conditions. These findings suggest that cryotherapy protocols may need to be adjusted or the cabin set temperature optimized to enhance the therapeutic benefits.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation and Experimental Activity for the Evaluation of the Filling Capability in External Gear Pumps 外啮合齿轮泵充注能力评价的仿真与实验研究
Fluids Pub Date : 2023-09-14 DOI: 10.3390/fluids8090251
Alessandro Corvaglia, Massimo Rundo, Sara Bonati, Manuel Rigosi
{"title":"Simulation and Experimental Activity for the Evaluation of the Filling Capability in External Gear Pumps","authors":"Alessandro Corvaglia, Massimo Rundo, Sara Bonati, Manuel Rigosi","doi":"10.3390/fluids8090251","DOIUrl":"https://doi.org/10.3390/fluids8090251","url":null,"abstract":"Partial electrification of hydraulic circuits to achieve energy savings requires an increase in the angular speed of the positive displacement pumps, with the risk of incomplete filling. In this context, the paper focuses on developing a computational fluid dynamics (CFD) model using SimericsMP+ for two external gear pumps, namely helical and spur type gears. The objective of this study is the analysis of the phenomena occurring on the suction side under conditions of incomplete filling at high speeds. Both CFD models have been validated by conducting experimental tests for measuring the flow rate delivered at various inlet pressures and angular speeds. The experimental results confirm the model’s capability to accurately detect the operating conditions at which the delivered flow rate starts to decrease due to the partial filling of the inter-teeth chambers. Furthermore, this paper investigates the effects of certain geometrical modifications to the spur gear pump. Specifically, the influence of the gear’s width-to-diameter ratio is studied, revealing that a lower ratio leads to slightly better filling. Conversely, increasing the inlet port diameter results in no improvement. Based on this study, the modelling approach appears to be accurate enough to serve as design tool for optimizing pumps to improve their filling capability.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow Rate Augmentation of Valveless Pumping via a Time-Dependent Stenosis: A Novel Device 通过时间相关狭窄的无阀泵送流量增加:一种新型装置
Fluids Pub Date : 2023-09-12 DOI: 10.3390/fluids8090249
Christos Manopoulos, Dimitrios Mathioulakis
{"title":"Flow Rate Augmentation of Valveless Pumping via a Time-Dependent Stenosis: A Novel Device","authors":"Christos Manopoulos, Dimitrios Mathioulakis","doi":"10.3390/fluids8090249","DOIUrl":"https://doi.org/10.3390/fluids8090249","url":null,"abstract":"A novel device of flow rate augmentation is proposed and experimentally examined in a horizontal valveless closed loop pump using a time-dependent stenosis (convergent–divergent channel) in contrast with the commonly used taper tubes of constant opening as flow rectifiers. The stenosis, being a part of the flexible tube of the pump, is formed by a semi-cylindrical surface attached to a compression spring of adjustable pretension compressing the tube against a flat plate. Located at either side of the pump pincher, the shape of the stenosis changes in time, without any external power source, as a function of the fluid pressure and the pretension of the spring. The spring pretension is adjusted by a trial-and-error procedure aiming for net flow rate maximization for each pinching frequency. For the examined pitching frequencies (5 Hz to 11 Hz, for which net flow rate is maximized) and for compression ratios 38% to 75%, the maximum net flow rate was found to be 720% of the non-stenosis case. Important parameters for flow enhancement were found to be the stenosis location along the loop, its opening, the compression ratio at the pincher area and the pinching frequency.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135886066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamics of Supersonic Steam Jets Injected into Cross-Flowing Water 横流水中超音速蒸汽射流的流体力学
Fluids Pub Date : 2023-09-12 DOI: 10.3390/fluids8090250
Hassan Ali Ghazwani, Khairuddin Sanaullah, Afrasyab Khan
{"title":"Hydrodynamics of Supersonic Steam Jets Injected into Cross-Flowing Water","authors":"Hassan Ali Ghazwani, Khairuddin Sanaullah, Afrasyab Khan","doi":"10.3390/fluids8090250","DOIUrl":"https://doi.org/10.3390/fluids8090250","url":null,"abstract":"High-speed gas/vapour jets injected into a cross-moving sonic liquid signifies a vital phenomenon which bears useful applications in environmental and energy processes. In the present experimental study, a pulsating jet of supersonic steam was injected into cross-flowing water. Circulation zones of opposite vorticity owing to the interaction between the steam jet and cross-water flow were found. However, a large circulation appeared in front of the nozzle exit. Also, most small circulation regions were observed at higher water-flow rates (>2 m3/s). Among the prime mixing variables (i.e., turbulence kinetic energy (TKE) and Reynolds shear stress (RSS)), the RSS estimations backed a small diffusive phenomenon within a region far from the nozzle exit. Further information extracted from the PIV images indicated the existence of Kelvin–Helmholtz (KH) instabilities. The counter-rotating vortex pairs (CVPs) appeared to be significant in the region close to the nozzle exit, and they exhibited leeward side folds. Moreover, the effects of the operating conditions on the pressure recovery and mixing efficiency as well as the penetration and the separation height were evaluated to determine the optimisation of the phenomenon. By applying extreme difference analysis, the mixing efficiency was found as the most influential parameter.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Schmidt Number on Forced Isotropic Turbulence with Passive Scalars 施密特数对被动标量强迫各向同性湍流的影响
Fluids Pub Date : 2023-09-12 DOI: 10.3390/fluids8090248
Paolo Orlandi, Sergio Pirozzoli
{"title":"Effect of Schmidt Number on Forced Isotropic Turbulence with Passive Scalars","authors":"Paolo Orlandi, Sergio Pirozzoli","doi":"10.3390/fluids8090248","DOIUrl":"https://doi.org/10.3390/fluids8090248","url":null,"abstract":"Traditionally, Fourier spectra have been employed to gain a deeper understanding of turbulence flow structures. The investigation of isotropic forced turbulence with passive scalars offers a straightforward means to examine the disparities between velocity and passive scalar spectra. This flow configuration has been extensively studied in the past, encompassing a range of Reynolds and Schmidt numbers. In this present study, direct numerical simulations (DNS) of this flow are conducted at sufficiently high Reynolds numbers, enabling the formation of a wide inertial range. The primary focus of this investigation is to quantitatively assess the variations in scalar spectra with the Schmidt number (Sc). The spectra exhibit a transition from a k−5/3 scaling for low Sc to a k−4/3 scaling for high Sc. The emergence of the latter power law becomes evident at Sc = 2, with its width expanding as Sc increases. To gain further insights into the underlying flow structures, a statistical analysis is performed by evaluating quantities aligned with the principal axes of the strain field. The study reveals that enstrophy is primarily influenced by the vorticity aligned with the intermediate principal strain axis, while the scalar gradient variance is predominantly controlled by the compressive strain. To provide a clearer understanding of the differences between enstrophy and scalar gradient variance, joint probability density functions (PDFs) and visualizations of the budget terms for both quantities are presented. These visualizations serve to elucidate the distinctions between the two and offer insights into their respective behaviors.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"363 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Vaporization Model for Continuous Surface Force Approaches and Subcooled Configurations 连续表面力方法和过冷结构的汽化模型
Fluids Pub Date : 2023-08-19 DOI: 10.3390/fluids8080233
Charles Brissot, Léa Cailly-Brandstäter, Elie Hachem, Rudy Valette
{"title":"A Vaporization Model for Continuous Surface Force Approaches and Subcooled Configurations","authors":"Charles Brissot, Léa Cailly-Brandstäter, Elie Hachem, Rudy Valette","doi":"10.3390/fluids8080233","DOIUrl":"https://doi.org/10.3390/fluids8080233","url":null,"abstract":"The integration of phase change phenomena through an interface is a numerical challenge that requires proper attention. Solutions to properly ensure mass and energy conservation were developed for finite difference and finite volume methods, but not for Finite Element methods. We propose a Finite Element phase change model based on an Eulerian framework with a Continuous Surface Force (CSF) approach. It handles both momentum and energy conservation at the interface for anisotropic meshes in a light an efficient way. To do so, a model based on the Level Set method is developed. A thick interface is considered to fit with the CSF approach. To properly compute the energy conservation, heat fluxes are extended through this interface thanks to the resolution of a transport equation. A dedicated pseudo compressible Navier–Stokes solver is added to compute velocity jumps with a source term at the interface in the velocity divergence equation. Several 1D and 2D benchmarks are considered with increasing complexity to highlight the performances of each feature of the framework. This stresses the capacity of the model to properly tackle phase change problems.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135937369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibration and Verification of Operation Parameters for an Array of Vectrino Profilers Configured for Turbulent Flow Field Measurement around Bridge Piers—Part II 用于桥墩周围湍流流场测量的Vectrino剖面仪阵列操作参数的校准和验证-第二部分
Fluids Pub Date : 2023-06-29 DOI: 10.3390/fluids8070199
Gordon Gilja, Robert Fliszar, Antonija Harasti, Manousos Valyrakis
{"title":"Calibration and Verification of Operation Parameters for an Array of Vectrino Profilers Configured for Turbulent Flow Field Measurement around Bridge Piers—Part II","authors":"Gordon Gilja, Robert Fliszar, Antonija Harasti, Manousos Valyrakis","doi":"10.3390/fluids8070199","DOIUrl":"https://doi.org/10.3390/fluids8070199","url":null,"abstract":"High-frequency velocimeters used for flow measurements during laboratory experiments allow the user to select the range for several operation parameters to set up the instrument for optimal velocity measurement. The discrepancies between velocity measurements collected with different instrument configurations can be significant, depending on the flume bed configuration and boundary conditions. The aim of this paper is to quantify the differences in flow velocity profiles measured with Acoustic Doppler Velocimeter Profilers (ADVPs) configured using a combination of profiling parameters: Ping Algorithm (PA), Transmit Pulse Size (TPS), and Cell Size (CS). Whereas in Part I of this research, the goal was to identify the optimal probe configuration for downstream measurement of the complex hydraulic structure (pier protected with riprap) based on a match of the flow rate with measurements from other instruments, in this paper, effect of distinct probe configuration on velocity profile and turbulent kinetic energy (TKE) is demonstrated. Differences between ADVPs’ configurations were analyzed through sensitivity analysis with the intention to calculate and compare any discrepancies in the velocity measurements for all the three measured velocity components: streamwise u, spanwise v and vertical w collected on two characteristic flume cross-sections. The results show that each parameter change has a significant effect on the measured values of each velocity component when compared to the Target Configuration (TC). The largest root-mean-square-error (RMSE) is observed when TPS is changed, followed by CS and PA. Absolute RMSE calculated for TPS change from 4 mm to 1 mm is, on average, 6.30 cm/s, 0.90 cm/s, and 0.82 cm/s for velocity components u, v and w, respectively. Absolute RMSE calculated for CS change from 1 mm to 4 mm is, on average, 4.49 cm/s, 0.88 cm/s, and 0.71 cm/s for velocity components u, v and w, respectively. Absolute RMSE calculated for PA change from Adaptive to Max interval is, on average, 4.04 cm/s, 0.63 cm/s, and 0.68 cm/s for velocity components u, v and w, respectively. For a change in all parameters, RMSE is greater for the cross-section downstream of the pier than for the approach cross-section: on average, 90%, 57% and 54% for a change in the PA, TPS, and CS, respectively.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135099974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信