Experimental Neurology最新文献

筛选
英文 中文
Targeting astrocytic TDAG8 with delayed CO2 postconditioning improves functional outcomes after controlled cortical impact injury in mice 以星形胶质细胞 TDAG8 为靶点的延迟二氧化碳后处理技术可改善小鼠受控皮层撞击损伤后的功能预后。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-22 DOI: 10.1016/j.expneurol.2024.114892
{"title":"Targeting astrocytic TDAG8 with delayed CO2 postconditioning improves functional outcomes after controlled cortical impact injury in mice","authors":"","doi":"10.1016/j.expneurol.2024.114892","DOIUrl":"10.1016/j.expneurol.2024.114892","url":null,"abstract":"<div><p>T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO<sub>2</sub> postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8<sup>−/−</sup> mice received DCPC daily by transiently inhaling 10% CO<sub>2</sub> after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8<sup>−/−</sup> mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8<sup>−/−</sup> mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14–28 were much weaker than those of DCPC on Days 3–28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro-molecular perspectives on long COVID-19 impacted cerebrovascular diseases - a role for dipeptidyl peptidase IV 长 COVID-19 影响脑血管疾病的神经分子观点--二肽基肽酶 IV 的作用。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-20 DOI: 10.1016/j.expneurol.2024.114890
{"title":"Neuro-molecular perspectives on long COVID-19 impacted cerebrovascular diseases - a role for dipeptidyl peptidase IV","authors":"","doi":"10.1016/j.expneurol.2024.114890","DOIUrl":"10.1016/j.expneurol.2024.114890","url":null,"abstract":"<div><p>The coronavirus disease 2019 (COVID-19) has caused immense devastation globally with many outcomes that are now extending to its long-term sequel called long COVID. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects not only lungs, but also the brain and heart in association with endothelial cell dysfunction, coagulation abnormalities, and thrombosis leading to cardio-cerebrovascular health issues. Fatigue, cognitive decline, and brain fog are common neurological symptoms in persisting long COVID. Neurodegenerative processes and SARS-CoV-2 infection manifest overlapping molecular mechanisms, such as cytokine dysregulation, inflammation, protein aggregation, mitochondrial dysfunction, and oxidative stress. Identifying the key molecules in these processes is of importance for prevention and treatment of this disease. In particular, Dipeptidyl peptidase IV (DPPIV), a multifunctional peptidase has recently drawn attention as a potential co-receptor for SARS-CoV-2 infection and cellular entry. DPPIV is a known co-receptor for some other COVID viruses including MERS-Co-V. DPPIV regulates the immune responses, obesity, glucose metabolism, diabetes, and hypertension that are associated with cerebrovascular manifestations including stroke. DPPIV likely worsens persisting COVID-19 by disrupting inflammatory signaling pathways and the neurovascular system. This review highlights the neurological, cellular and molecular processes concerning long COVID, and DPPIV as a potential key factor contributing to cerebrovascular dysfunctions following SARS-CoV-2 infection.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facilitatory role of astrocytes in axonal regeneration after acute and chronic spinal cord injury 星形胶质细胞在急性和慢性脊髓损伤后轴突再生中的促进作用
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-15 DOI: 10.1016/j.expneurol.2024.114889
{"title":"A facilitatory role of astrocytes in axonal regeneration after acute and chronic spinal cord injury","authors":"","doi":"10.1016/j.expneurol.2024.114889","DOIUrl":"10.1016/j.expneurol.2024.114889","url":null,"abstract":"<div><p>Neuroscience dogma avers that astrocytic “scars” inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form “borders” around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons <em>into</em> reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI <em>re-orient</em> reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0014488624002152/pdfft?md5=9a71f7ccde011f41f3d42497225d51e7&pid=1-s2.0-S0014488624002152-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair 干细胞外泌体在神经再生中的作用:对神经修复的贡献
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-14 DOI: 10.1016/j.expneurol.2024.114882
{"title":"The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair","authors":"","doi":"10.1016/j.expneurol.2024.114882","DOIUrl":"10.1016/j.expneurol.2024.114882","url":null,"abstract":"<div><p>Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
⍺-Synuclein levels in Parkinson's disease – Cell types and forms that contribute to pathogenesis 帕金森病中的突触核蛋白水平--导致发病的细胞类型和形式。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-14 DOI: 10.1016/j.expneurol.2024.114887
{"title":"⍺-Synuclein levels in Parkinson's disease – Cell types and forms that contribute to pathogenesis","authors":"","doi":"10.1016/j.expneurol.2024.114887","DOIUrl":"10.1016/j.expneurol.2024.114887","url":null,"abstract":"<div><p>Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0014488624002139/pdfft?md5=835660956cd37963c3a4564489076dcb&pid=1-s2.0-S0014488624002139-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model 高脂饮食对小儿啮齿动物模型中的闭头创伤性脑损伤有负面影响。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-14 DOI: 10.1016/j.expneurol.2024.114888
{"title":"High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model","authors":"","doi":"10.1016/j.expneurol.2024.114888","DOIUrl":"10.1016/j.expneurol.2024.114888","url":null,"abstract":"<div><p>Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, <em>p</em>(injury) &lt; 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, <em>p</em>(injury) &lt; 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, <em>p</em> &lt; 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into Lipocalin-2 in ischemic stroke and hemorrhagic brain injury: Integrating animal and clinical studies 缺血性中风和出血性脑损伤中脂质结合素-2的机制研究:整合动物和临床研究。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-10 DOI: 10.1016/j.expneurol.2024.114885
Korsin Laohavisudhi , Sirawit Sriwichaiin , Tanawat Attachaipanich , Borwon Wittayachamnankul , Nipon Chattipakorn , Siriporn Chattipakorn
{"title":"Mechanistic insights into Lipocalin-2 in ischemic stroke and hemorrhagic brain injury: Integrating animal and clinical studies","authors":"Korsin Laohavisudhi ,&nbsp;Sirawit Sriwichaiin ,&nbsp;Tanawat Attachaipanich ,&nbsp;Borwon Wittayachamnankul ,&nbsp;Nipon Chattipakorn ,&nbsp;Siriporn Chattipakorn","doi":"10.1016/j.expneurol.2024.114885","DOIUrl":"10.1016/j.expneurol.2024.114885","url":null,"abstract":"<div><p>Brain injuries, including strokes and traumatic brain injuries (TBI), are a major global health concern, contributing significantly to both mortality and long-term disability. Recent research has identified lipocalin-2 (LCN2), a glycoprotein secreted by various brain cells, as a key factor in influencing brain injury outcomes. Evidence from animal and clinical studies firmly establishes the pivotal role of LCN2 in driving the inflammatory responses triggered by damage to brain tissue. Furthermore, increased LCN2 promotes cellular differentiation, blood-brain barrier breakdown, and decreases cell viability. Interventions with LCN2 inhibitors attenuated brain injury through a reduction in the inflammation process and enhanced cellular viability. Potential mechanisms of LCN2 involve several pathways including the Janus kinase-2 (JAK2)-signal transducers and the transcription-3 (STAT3) signaling, hypoxia-inducible factor 1-alpha (HIF-1α)-LCN2-vascular endothelial growth factor alpha (VEGFα), and the PKR-like ER kinase (PERK) pathways. LCN2 itself interacts with diverse inflammatory cytokines in TBI and intracranial hemorrhage (ICH), resulting in disruption of the blood-brain barrier, increased programmed cell death, and an imbalance in iron homeostasis. Clinical studies have also shown that increased LCN2 level can act as a prognostic biomarker of outcomes following brain injuries. Therefore, this review aims to comprehensively evaluate the role and underlying mechanisms of LCN2 in brain injuries, including stroke and TBI, and explore potential therapeutic interventions targeting LCN2 in these conditions.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-oxidative stress and cognitive improvement of a semi-synthetic isoorientin-based GSK-3β inhibitor in rat pheochromocytoma cell PC12 and scopolamine-induced AD model mice via AKT/GSK-3β/Nrf2 pathway 半合成异连翘素GSK-3β抑制剂通过AKT/GSK-3β/Nrf2通路在大鼠嗜铬细胞瘤细胞PC12和东莨菪碱诱导的AD模型小鼠中抗氧化和改善认知能力
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-10 DOI: 10.1016/j.expneurol.2024.114881
{"title":"Anti-oxidative stress and cognitive improvement of a semi-synthetic isoorientin-based GSK-3β inhibitor in rat pheochromocytoma cell PC12 and scopolamine-induced AD model mice via AKT/GSK-3β/Nrf2 pathway","authors":"","doi":"10.1016/j.expneurol.2024.114881","DOIUrl":"10.1016/j.expneurol.2024.114881","url":null,"abstract":"<div><h3>Background</h3><p>Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive deficits. Although the pathogenesis of AD is unclear, oxidative stress has been implicated to play a dominant role in its development. The flavonoid isoorientin (ISO) and its synthetic derivatives TFGF-18 selectively inhibit glycogen synthase kinase-3β (GSK-3β), a potential target of AD treatment.</p></div><div><h3>Purpose</h3><p>To investigate the neuroprotective effect of TFGF-18 against oxidative stress <em>via</em> the GSK-3β pathway in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced rat pheochromocytoma PC12 cells <em>in vitro</em> and scopolamine (SCOP)-induced AD mice <em>in vivo</em>.</p></div><div><h3>Method</h3><p>The oxidative stress of PC12 cells was induced by H<sub>2</sub>O<sub>2</sub> (600 μM) and the effects of TFGF-18 (2 and 8 μM) or ISO (12.5 and 50 μM) were observed. The AD mouse model was induced by SCOP (3 mg/kg), and the effects of TFGF-18 (2 and 8 mg/kg), ISO (50 mg/kg), and donepezil (DNP) (3 mg/kg) were observed. DNP, a currently accepted drug for AD was used as a positive control. The neuronal cell damages were analyzed by flow cytometry, LDH assay, JC-1 assay and Nissl staining. The oxidative stress was evaluated by the detection of MDA, SOD, GPx and ROS. The level of ACh, and the activity of AChE, ChAT were detected by the assay kit. The expressions of Bax, Bcl-2, caspase3, cleaved-caspase3, p-AKT (Thr308), AKT, p-GSK-3β (Ser9), GSK-3β, Nrf2, and HO-1, as well as p-CREB (Ser133), CREB, and BDNF were analyzed by western blotting. Morris water maze test was performed to analyze learning and memory ability.</p></div><div><h3>Results</h3><p>TFGF-18 inhibited neuronal damage and the expressions of Bax, caspase3 and cleaved-caspase3, and increased the expression of Bcl-2 <em>in vitro</em> and <em>in vivo</em>. The level of MDA and ROS were decreased while the activities of SOD and GPx were increased by TFGF-18. Moreover, TFGF-18 increased the p-AKT, p-GSK-3β (Ser9), Nrf2, HO-1, p-CREB, and BDNF expression reduced by H<sub>2</sub>O<sub>2</sub> and SCOP. Meanwhile, MK2206, an AKT inhibitor, reversed the effect of TFGF-18 on the AKT/GSK-3β pathway. In addition, the cholinergic system (ACh, ChAT, and AChE) disorders were retrained and the learning and memory impairments were prevented by TFGF-18 in SCOP-induced AD mice.</p></div><div><h3>Conclusions</h3><p>TFGF-18 protects against neuronal cell damage and cognitive impairment by inhibiting oxidative stress <em>via</em> AKT/GSK-3β/Nrf2 pathway.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irisflorentin improves functional recovery after spinal cord injury by protecting the blood–spinal cord barrier and promoting axonal growth 伊利司命通过保护血液-脊髓屏障和促进轴突生长,改善脊髓损伤后的功能恢复。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-10 DOI: 10.1016/j.expneurol.2024.114886
{"title":"Irisflorentin improves functional recovery after spinal cord injury by protecting the blood–spinal cord barrier and promoting axonal growth","authors":"","doi":"10.1016/j.expneurol.2024.114886","DOIUrl":"10.1016/j.expneurol.2024.114886","url":null,"abstract":"<div><p>Spinal cord injury (SCI) induces the disruption of the blood–spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold inducible RNA binding protein-regulated mitochondria associated endoplasmic reticulum membranes-mediated Ca2+ transport play a critical role in hypothermia cerebral resuscitation 冷诱导 RNA 结合蛋白调控线粒体相关内质网膜介导的 Ca2+ 转运在低体温脑复苏中发挥关键作用。
IF 4.6 2区 医学
Experimental Neurology Pub Date : 2024-07-09 DOI: 10.1016/j.expneurol.2024.114883
Yu Gao , Haoxin Liu , Yaqing Zhou , Shenquan Cai , Jie Zhang , Jie Sun , Manlin Duan
{"title":"Cold inducible RNA binding protein-regulated mitochondria associated endoplasmic reticulum membranes-mediated Ca2+ transport play a critical role in hypothermia cerebral resuscitation","authors":"Yu Gao ,&nbsp;Haoxin Liu ,&nbsp;Yaqing Zhou ,&nbsp;Shenquan Cai ,&nbsp;Jie Zhang ,&nbsp;Jie Sun ,&nbsp;Manlin Duan","doi":"10.1016/j.expneurol.2024.114883","DOIUrl":"10.1016/j.expneurol.2024.114883","url":null,"abstract":"<div><p>Cardiac arrest is a global health issue causing more deaths than many other diseases. Hypothermia therapy is commonly used to treat secondary brain injury resulting from cardiac arrest. Previous studies have shown that CIRP is induced in specific brain regions during hypothermia and inhibits mitochondrial apoptotic factors. However, the specific mechanisms by which hypothermia-induced CIRP exerts its anti-apoptotic effect are still unknown. This study aims to investigate the role of Cold-inducible RNA-binding protein (CIRP) in mitochondrial-associated endoplasmic reticulum membrane (MAM)-mediated Ca<sup>2+</sup> transport during hypothermic brain resuscitation.We constructed a rat model of cardiac arrest and resuscitation and hippocampal neuron oxygen-glucose deprivation/reoxygenation model. We utilized shRNA transfection to interfere the expression of CIRP and observe the effect of CIRP on the structure and function of MAM.Hypothermia induced CIRP can reduce the apoptosis of hippocampal neurons, and improve the survival rate of rats. Hypothermia induced CIRP can reduce the expressions of calcium transporters IP<sub>3</sub>R and VDAC1 in MAM, reduce the concentration of calcium in mitochondria, decrease the expression of ROS, and stabilize the mitochondrial membrane potential. Immunofluorescence and immunocoprecipitation showed that CIRP could directly interact with IP<sub>3</sub>R-VDAC1 complex, thereby changing the structure of MAM, inhibiting calcium transportation and improving mitochondrial function in vivo and vitro.Both in vivo and in vitro experiments have confirmed that hypothermia induced CIRP can act on the calcium channel IP<sub>3</sub>R-VDAC1 in MAM, reduce the calcium overload in mitochondria, improve the energy metabolism of mitochondria, and thus play a role in neuron resuscitation. This study contributes to understanding hypothermia therapy and identifies potential targets for brain injury treatment.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信