Environmental Technology and Innovation最新文献

筛选
英文 中文
Accelerated spent coffee grounds humification by heat/base co-activated persulfate and products’ fertilization evaluation 热碱共活化过硫酸盐加速废咖啡渣腐殖化及产物施肥评价
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103393
Yanping Zhu, Keyi Zhang, Qing Hu, Weijia Liu, Yi Qiao, Dongqing Cai, Pengjin Zhu, Dongfang Wang, He Xu, Shihu Shu, Naiyun Gao
{"title":"Accelerated spent coffee grounds humification by heat/base co-activated persulfate and products’ fertilization evaluation","authors":"Yanping Zhu, Keyi Zhang, Qing Hu, Weijia Liu, Yi Qiao, Dongqing Cai, Pengjin Zhu, Dongfang Wang, He Xu, Shihu Shu, Naiyun Gao","doi":"10.1016/j.eti.2023.103393","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103393","url":null,"abstract":"Coffee, as the second most common beverage in the world, produced 60% of spent coffee grounds (SCG) with per ton of coffee beans processed. SCG is a typical lignocellulosic-rich organic waste and mainly disposed via composting or incineration. In this study, a rapid humification approach was proposed for the recycling of SCG using heat/base co-activated persulfate (heat/KOH/PS) advanced oxidation process. The yields of humic-like acid (HLA) and fulvic-like acid (FLA) reached 45 (3.96%) and 192 mg/g (19.2%) under the optimal humification conditions of 1% PS and 4% KOH at 100 ℃ in 1 h. The typical active groups of -OH and -COOH in FA standard were observed with higher amounts in the product compared to SCG, which may be related to occurrence of hydroxylation, carboxylation and Maillard reactions during humification. Radicals of •OH and SO4•- were identified in heat/KOH/PS system and made significant contribution to SCG humification. A slow-release nano FLA fertilizer (SNFF) was prepared by mixing treated SCG with attapulgite and showed good slow-release behaviors of HLA and FLA. In pot experiments with acid soil, SNFF increased the average root length of chickweeds by 233% compared with blank. Meanwhile, SNFF also contributed to increased abundance and richness of soil microbial community as well as a pH rise from 5 to 6.7, which was conducive to acid soil amendment. The earthworm test indicated positive ecological safety of SNFF. Overall, this study highlights an efficient humification method for the recycling of organic biowaste such as SCG in green agriculture.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135062017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the biodegradation efficiency and underlying molecular pathway of strain AEPI 0-0: a newly isolated tetracycline-degrading Serratia marcescens 新分离的四环素降解粘质沙雷菌AEPI 0-0的生物降解效率和潜在分子途径的评估
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103383
Huike Ye, Zhennan Wang, Xiaojing Li, Yang Sun, Lixia Zhao, Mohan Bai, Liping Weng, Yongtao Li
{"title":"Assessing the biodegradation efficiency and underlying molecular pathway of strain AEPI 0-0: a newly isolated tetracycline-degrading Serratia marcescens","authors":"Huike Ye, Zhennan Wang, Xiaojing Li, Yang Sun, Lixia Zhao, Mohan Bai, Liping Weng, Yongtao Li","doi":"10.1016/j.eti.2023.103383","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103383","url":null,"abstract":"With the development of aquaculture and animal husbandry, the use of tetracycline antibiotics (TCs) has increased, thereby leading to negative impacts on naturally-occurring microbial communities. Microbial degradation is an effective and environmental friendly method to degrade TCs, but so far, very few cultured strains are suitable for this purpose. In this study, a bacterial strain, AEPI 0-0, with the potential to degrade TCs was isolated, with phylogenetic analysis subsequently classifying it as Serratia marcescens. The single factors that affected the strain’s degradation efficiency on TC-HCl were then studied using an orthogonal experimental design. The results showed that the biodegradation efficiency could reach about 85% on the 4th day, with the process following the degradation kinetic equation. Subsequently, RNA-seq was used and the differentially expressed genes(DEGs)were annotated and analyzed. The results showed that more genes were enriched in biological processes such as amino acid metabolism, carbohydrate metabolism, and cell membrane transport metabolism pathway. In addition, TetR family transcription factors may play an important role in the physiological process of AEPI 0-0 tolerance and degradation of tetracycline. In conclusion, a Serratia marcescens strain with high potential for TCs degradation was obtained, with the conditions for maximum degradation efficiency subsequently optimized, changes in the metabolic pathways were also preliminarily discussed. This strain could potentially be applied for the bioremediation of soil and water contaminated by TCs antibiotics. At the same time, this study also provides strains as well as theoretical support for microbial-based remediation of the environment.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135012440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan/MoS2/GO membrane for catalytic degradation of organic contaminants 壳聚糖/MoS2/GO膜催化降解有机污染物
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103410
Delal E. Al Momani, Fathima Arshad, Linda Zou
{"title":"Chitosan/MoS2/GO membrane for catalytic degradation of organic contaminants","authors":"Delal E. Al Momani, Fathima Arshad, Linda Zou","doi":"10.1016/j.eti.2023.103410","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103410","url":null,"abstract":"Nanocomposite membranes were fabricated by incorporating MoS2 and GO nanomaterials in the chitosan polymer matrix. The higher polymer to nanomaterial ratio resulted in more porous CMG2 membrane than CMG1 membrane. In comparison of the membranes’ performance, the control membrane without nanomaterials only had minimal removal of organic matter, whereas both nanocomposite membranes achieved 95-100% color removal. CMG2 also achieved 100% TOC removals of MO solutions whereas the TOC removal by CMG1 was less complete. The MoS2 nanoparticles induced catalytic effect to degradate organic matter. The GO nanosheets also introduced a more substantial negative charge to enhance the separation and rejection of organic contaminants. In addition, a faster treatment kinetics per filtration cycle was also displayed by CMG2 than that of CMG1. This was due to its higher posoristy facilitated better access to the MoS2 nanomaterials, for the dye molecules interacting with catalytic sites. Chitosan/MoS2/GO membrane could be a promising membrane-based solution for efficient catalytic degradation of organic contaminants in water and wastewater treatment.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"8 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detoxification of Cr(Ⅵ) and extracellular formation of nanoparticles Cr2O3 by a highly Cr(Ⅵ)-resistant fungus Fusarium solani SWUZF-1 高Cr(Ⅵ)抗性真菌Fusarium solani SWUZF-1对Cr(Ⅵ)的解毒和细胞外纳米Cr2O3的形成
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103377
WenJun Tuo, ShiHao Zuo, JinYan Dong
{"title":"Detoxification of Cr(Ⅵ) and extracellular formation of nanoparticles Cr2O3 by a highly Cr(Ⅵ)-resistant fungus Fusarium solani SWUZF-1","authors":"WenJun Tuo, ShiHao Zuo, JinYan Dong","doi":"10.1016/j.eti.2023.103377","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103377","url":null,"abstract":"In this study, a novel highly Cr(Ⅵ)-resistant fungus Fusarium solani SWUZF-1, tolerating 10 g/L Cr(Ⅵ), was obtained from an abandoned factory of heavy metals contaminated. F. solani SWUZF-1 could effectively remove Cr(Ⅵ) under extensive environmental conditions. The removal rate of Cr(Ⅵ) reached 100% when the concentration of Cr(Ⅵ) was less than 100 mg/L. At 10 g/L Cr(Ⅵ), the removal amount of Cr(Ⅵ) still reached 1179.76 mg/L (11.80%). Chromium induced the mycelia swelling and severe ultrastructural alterations in the hypha (the thickening of the cell wall and the radius of the vesicle increasing). FTIR showed that N-H, O-H, C=O, and other functional groups on the surface of strain SWUZF-1 interacted with Cr(Ⅵ). The experiments on cell degeneration showed that Cr(Ⅵ) removal was mainly bio-reduction rather than biosorption. The cell-free suspension had the highest removal rate of Cr(Ⅵ), indicating that Cr(Ⅵ) reduction mainly occurred extracellularly. Analysis of SEM-EDX and TEM-EDX demonstrated that Cr2O3 nanoparticles were one of the reduced products of Cr(Ⅵ). Furthermore, this study compared the transcriptional changes in F. solani SWUZF-1 at 0 and 10 g/L Cr(Ⅵ) by de novo transcriptomic analysis. A total of 2352 differentially expressed genes (DEGs) were identified. These DEGs were relevant to the cell wall, apoptosis, DNA replication, hormonal regulation, transportation, reductase, etcetera. The genes related to the cell wall upregulated, indicating that the cell wall of F. solani SWUZF-1 thickened, which was also confirmed by TEM. This study revealed a fungus F. solani SWUZF-1 with the potential to remediate wastewater polluted by Cr(Ⅵ) and enlarged an insight into the Cr(Ⅵ) reduction mechanism of F. solani SWUZF-1.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135012265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of biomass feedstocks on magnetic biochar preparation for efficient Pb(II) removal 生物质原料对制备磁性生物炭高效去除铅(II)的影响
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103363
Jun Dong, Peikun Jiang, Hailong Wang, Ruohui Lu, Yinxiu Liu, Yin Li, Yaping Gan, Nanthi Bolan
{"title":"Influence of biomass feedstocks on magnetic biochar preparation for efficient Pb(II) removal","authors":"Jun Dong, Peikun Jiang, Hailong Wang, Ruohui Lu, Yinxiu Liu, Yin Li, Yaping Gan, Nanthi Bolan","doi":"10.1016/j.eti.2023.103363","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103363","url":null,"abstract":"Biomass feedstocks have different physicochemical properties owing to their composition, morphology, functional groups, and surface chemistry, leading to considerable differences in the adsorption capacity of their biochars. However, few studies have focused on selecting appropriate biomass feedstocks for the adsorption of Pb(II) and other potentially toxic elements from wastewater. In addition, the effect of magnetic modification on various biomass feedstocks remains unclear. In this study, three types of biomass feedstocks, including fir wood, bamboo wood, and rice straw, were used to prepare biochars (BFW, BBW, and BRS) and magnetic biochars (MagFW, MagBW, and MagRS). Results showed that the Langmuir adsorption capacity of BRS reached 153 mg/g for Pb(II), which was approximately 2.8 and 1.9 times that of BFW and BBW, respectively. The higher Pb(II) adsorption of BRS primarily resulted from its rich mineral content, relatively high pH, and abundant oxygen-containing functional groups, which strengthened the release of alkali/alkaline earth metal cations, precipitation of (hydro)cerussite, ion exchange with H+, and complexation by hydroxyl and carboxyl groups. Magnetic modification changed mainly the surface charge, pH, and surface functional groups of various biochars, thus improving their Pb(II) adsorption capacity through electrostatic attraction, ion exchange, and complexation. Specifically, MagFW (308 mg/g) and MagBW (284 mg/g) demonstrated a more pronounced increase in Pb(II) adsorption capacity than MagRS (297 mg/g), because of the enhanced mineral precipitation and complexation with the FeO band. Results from this study suggest that the application of biochar may be a feasible, effective, and eco-friendly strategy for removing Pb(II) from wastewater.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"531 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of geographical origin, harvesting time and processing system on the characteristics of olive-mill wastewater: A step toward reducing the environmental impact of the olive oil sector 地理来源、收获时间和加工系统对橄榄厂废水特性的影响:减少橄榄油行业对环境影响的一个步骤
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103365
Aline Issa, Milad El Riachy, Christelle Bou-Mitri, Jacqueline Doumit, Wadih Skaff, Layal Karam
{"title":"Influence of geographical origin, harvesting time and processing system on the characteristics of olive-mill wastewater: A step toward reducing the environmental impact of the olive oil sector","authors":"Aline Issa, Milad El Riachy, Christelle Bou-Mitri, Jacqueline Doumit, Wadih Skaff, Layal Karam","doi":"10.1016/j.eti.2023.103365","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103365","url":null,"abstract":"The olive oil production sector generates considerable quantities of liquid by-products (olive-mill wastewater, OMWW) which, if left untreated, can cause detrimental environmental impacts. This study aimed to investigate the influence of the Lebanese geographical origin, harvesting time and processing system and their interactions on the chemical and biological characteristics of these by-products. The results showed that the interaction of all the three studied factors on the chemical composition of OMWW, were highly significant (p<0.001). Furthermore, all the OMWW could be considered as a rich source of natural phenolic and antioxidant compounds. The average Total Phenolic Content in OMWW samples was 807.56 GAE/ kg with significantly higher values for OMWW obtained from the North (1027.7 GAE/ kg) at early harvest (1024.00 GAE/ kg) and using press system (1036.13 GAE/ kg) as compared to the other samples from the South, intermediate and late harvesting time using 3-phases and Sinolea (p<0.05). The overall results of this study shed light on the need to establish a sustainable means of treating the liquid effluents of olive mills. The results can help prioritize the regions in most need for a treatment system based on the values reported, while redirecting our attention to the possibility of valorizing the phenolic contents as potent raw material rather than pollutants, in an aim to enhance sustainable agriculture and help achieve (sustainable development goal) SDG6 for improved water quality by 2030.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"220 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and optimization of low-cost red mud based zero-valent iron porous adsorbent by carbothermal reduction and Box-Behnken response method 碳热还原- Box-Behnken响应法制备低成本赤泥基零价铁多孔吸附剂及优化
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103376
Yufeng Du, Zhigang Yang, Linxu Xu, Xue Shen, Mingrui Shao, Feiyong Chen, Jin Wang
{"title":"Preparation and optimization of low-cost red mud based zero-valent iron porous adsorbent by carbothermal reduction and Box-Behnken response method","authors":"Yufeng Du, Zhigang Yang, Linxu Xu, Xue Shen, Mingrui Shao, Feiyong Chen, Jin Wang","doi":"10.1016/j.eti.2023.103376","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103376","url":null,"abstract":"Red mud is a polluting waste product emitted from the aluminum production industry, which is a potential threat to the environment due to its high yield, strong alkalinity and complex elemental composition. The resource utilization of red mud has also attracted the attention of many researchers. In this study, red mud, straw and bentonite were used as raw materials to prepare granular porous zero valent iron (ZVI) adsorption reaction materials (Fe/GSBR) by carbothermal reduction. Straw was used as pore-forming and reducing agent, bentonite as binder, and red mud as substrate and iron source. The effects of preparation conditions on Fe/GSBR properties were investigated, including raw material ratio, sintering temperature, sintering time and straw particle size. The preparation conditions were optimized by response surface analysis, and the best preparation conditions were determined as follows: raw material ratio was 1:2, sintering temperature was 906℃, sintering time was 60 min, straw particle size was 100 mesh. The Fe/GSBR properties were characterized by SEM, EDS, XRD, and BET to demonstrate the porous and ZVI material. In addition, the regeneration properties and toxic leaching of the materials were evaluated to ensure the environmental safety during use.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"52 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136371503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of polyhydroxybutyrate from waste cooking oil using magnetically recoverable microbial-based nanocomposites as reusable inocula 利用磁性可回收微生物基纳米复合材料作为可重复使用的接种剂从废食用油中生产聚羟基丁酸盐
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103369
Prawphan Kotthale, Chewapat Saejung
{"title":"Production of polyhydroxybutyrate from waste cooking oil using magnetically recoverable microbial-based nanocomposites as reusable inocula","authors":"Prawphan Kotthale, Chewapat Saejung","doi":"10.1016/j.eti.2023.103369","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103369","url":null,"abstract":"Polyhydroxybutyrate (PHB) is produced during bacterial metabolism and can be used for the production of biodegradable plastics. The utilization of wastes as carbon sources and inoculum reuse are potential strategies to reduce production costs. In this study, a method for PHB production from waste cooking oil using a reusable inoculum was developed. Two microbial-based nanocomposites (fabricated bead and bacterial nanocomposites) were used as reusable inocula, and 6% waste cooking oil was used as a carbon source. The addition of 0.1% iron oxide (Fe3O4) increased PHB production and oil removal efficiency. Supplementation with 0.1% pumice enhanced the compressive strength and Young’s modulus of the fabricated bead nanocomposite containing a photosynthetic bacterium, alginate, Fe3O4, and pumice. The bead nanocomposite was reused for nine cycles with single harvesting of PHB. To improve the recycling time, free cells released from the bead nanocomposite were immobilized to generate a bacterial nanocomposite containing bacteria and Fe3O4. Bacterial nanocomposites showed the highest oil removal rates (38%–51%) and PHB contents in multiple harvests (19%–30%). The bacterial nanocomposite was recycled in 11 batches without deterioration and simplified using magnetic harvesting, which eliminated the incubation time and medium required for inoculum preparation. These results suggest that bead nanocomposites can be used to treat cooking oil until they disintegrate and release free cells that are immobilized with Fe3O4 to generate bacterial nanocomposites for unlimited recycling. This study introduces technology for PHB production from waste cooking oil.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"4 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134996203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-loaded magnesium and phosphorus-modified lignite adsorbents: Efficient adsorption and immobilization for remediation of Cd-contaminated water and soil 表面负载镁和磷改性褐煤吸附剂:高效吸附和固定化修复cd污染的水和土壤
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103442
Yibo Cheng, Tao Wen, Weizhi Zhou, Yali Yuan, Ruilian Sun
{"title":"Surface-loaded magnesium and phosphorus-modified lignite adsorbents: Efficient adsorption and immobilization for remediation of Cd-contaminated water and soil","authors":"Yibo Cheng, Tao Wen, Weizhi Zhou, Yali Yuan, Ruilian Sun","doi":"10.1016/j.eti.2023.103442","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103442","url":null,"abstract":"Lignite is a resource-rich material with favorable adsorption properties and can be used as an environmentally friendly material for removing heavy metals. In this study, we loaded magnesium and phosphate ions onto the surface of lignite (LM) by using chemical modification to generate modified lignite materials, Mg-LM and P-LM, which were used for the adsorption and immobilization of Cd (II) in polluted water and soil. Characterization analysis showed the introduction of exchangeable Mg ions and enhancement of the pore structure in Mg-LM; the increase in the number of oxygenated functional groups and, exchangeable calcium ions and P content of P-LM may favor the adsorption and immobilization of Cd (II). Cd (II) adsorption on Mg-LM and P-LM was consistent with the pseudo-secondary kinetics and Langmuir isotherm models. The maximum adsorption capacity of Cd (II) on Mg-LM and P-LM was 1033 mg/g and 55 mg/g, respectively. The reduction in the soil DTPA-Cd content (32.9%) was greater under P-LM treatment than under Mg-LM (20.2 %) and LM (11.1 %) treatments. In addition, successive BCR extractions confirmed that Mg-LM and P-LM promoted the transformation of unstable Cd fractions to stable Cd fractions in the soil. The XRD, FTIR, and XPS results indicated that electrostatic interactions, ion exchange, surface complexation and precipitation might be the main mechanisms involved in the adsorption and immobilization of Cd (II) by Mg-LM and P-LM. Our results suggest that Mg-LM is more suitable than P-LM for the remediation of Cd-contaminated water, and less applicable than in Cd-contaminated soil.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"42 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis 水分条件和丛枝菌根共生关系对芦苇修复石油污染土壤的影响
Environmental Technology and Innovation Pub Date : 2023-11-01 DOI: 10.1016/j.eti.2023.103437
Yibo Wu, Zhibao Cheng, Chengwei Wu, Hongkai Zhao, Peng Bao, Xiaoyong Cui
{"title":"Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis","authors":"Yibo Wu, Zhibao Cheng, Chengwei Wu, Hongkai Zhao, Peng Bao, Xiaoyong Cui","doi":"10.1016/j.eti.2023.103437","DOIUrl":"https://doi.org/10.1016/j.eti.2023.103437","url":null,"abstract":"Phytoremediation of petroleum-contaminated soils using the synergistic functions of plants and rhizosphere microorganisms is a promising technology. However, successfully applying this approach presents challenges under certain conditions (submerged environments). This study analyzed the potential role of Phragmites australis in symbiosis with arbuscular mycorrhizal (AM) fungi during petroleum remediation at two water levels. AM inoculation promoted P. australis aboveground growth under non-flooded conditions, whereas flooding significantly increased P. australis biomass. The highest total petroleum hydrocarbon (TPH) degradation efficiency was observed in non-flooded soils, whereas submergence severely inhibited TPHs dissipation. Plants with AM inoculation treatments substantially enhanced the removal of TPHs under flooded conditions. TPH removal was positively correlated with dehydrogenase activity but negatively correlated with easily extracted glomalin-related soil proteins. Moreover, different petroleum-hydrocarbon-decaying candidates contributed to TPH removal in these two cultured soils. These findings provide valuable information for the remediation of future TPH-contaminated soils, especially applied in intermittently submerged environments.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"18 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135516680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信