{"title":"A Simple Route for Purifying Extracellular Poly(3-hydroxybutyrate)-depolymerase from Penicillium pinophilum.","authors":"Elpiniki Panagiotidou, Constantinos Konidaris, Apostolos Baklavaridis, Ioannis Zuburtikudis, Dimitris Achilias, Paraskevi Mitlianga","doi":"10.1155/2014/159809","DOIUrl":"10.1155/2014/159809","url":null,"abstract":"<p><p>This work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process. A strain of the fungus Penicillium pinophilum (ATCC 9644) is used for the isolation of extracellular PHB-depolymerase. The molecular weight of the purified enzyme is about 35 kDa and is estimated by gel electrophoresis (SDS-PAGE, 12% polyacrylamide). The enzymatic activity of the isolated enzyme is determined to be 3.56-fold similar to that found by other researchers that have used chromatography for the isolation. The as-isolated enzyme disintegrates the poly(3-hydroxybutyrate) (PHB) films successfully, as it is demonstrated by the biodegradation test results provided here. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-09-10DOI: 10.1155/2014/389739
Kanchana Dumri, Dau Hung Anh
{"title":"Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production.","authors":"Kanchana Dumri, Dau Hung Anh","doi":"10.1155/2014/389739","DOIUrl":"https://doi.org/10.1155/2014/389739","url":null,"abstract":"<p><p>Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10-20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40(°)C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/389739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fungal laccases and their applications in bioremediation.","authors":"Buddolla Viswanath, Bandi Rajesh, Avilala Janardhan, Arthala Praveen Kumar, Golla Narasimha","doi":"10.1155/2014/163242","DOIUrl":"https://doi.org/10.1155/2014/163242","url":null,"abstract":"<p><p>Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/163242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32451566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-11-12DOI: 10.1155/2014/601046
Rajshree Saxena, Rajni Singh
{"title":"Contemporaneous Production of Amylase and Protease through CCD Response Surface Methodology by Newly Isolated Bacillus megaterium Strain B69.","authors":"Rajshree Saxena, Rajni Singh","doi":"10.1155/2014/601046","DOIUrl":"10.1155/2014/601046","url":null,"abstract":"<p><p>The enormous increase in world population has resulted in generation of million tons of agricultural wastes. Biotechnological process for production of green chemicals, namely, enzymes, provides the best utilization of these otherwise unutilized wastes. The present study elaborates concomitant production of protease and amylase in solid state fermentation (SSF) by a newly isolated Bacillus megaterium B69, using agroindustrial wastes. Two-level statistical model employing Plackett-Burman and response surface methodology was designed for optimization of various physicochemical conditions affecting the production of two enzymes concomitantly. The studies revealed that the new strain concomitantly produced 1242 U/g of protease and 1666.6 U/g of amylase by best utilizing mustard oilseed cake as the substrate at 20% substrate concentration and 45% moisture content after 84 h of incubation. An increase of 2.95- and 2.04-fold from basal media was observed in protease and amylase production, respectively. ANOVA of both the design models showed high accuracy of the polynomial model with significant similarities between the predicted and the observed results. The model stood accurate at the bench level validation, suggesting that the design model could be used for multienzyme production at mass scale. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32884256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prolonged Laccase Production by a Cold and pH Tolerant Strain of Penicillium pinophilum (MCC 1049) Isolated from a Low Temperature Environment.","authors":"Kusum Dhakar, Rahul Jain, Sushma Tamta, Anita Pandey","doi":"10.1155/2014/120708","DOIUrl":"https://doi.org/10.1155/2014/120708","url":null,"abstract":"<p><p>Production of laccase by a cold and pH tolerant strain of Penicillium pinophilum has been investigated under different cultural conditions for up to 35 days of incubation. The fungus was originally isolated from a low temperature environment under mountain ecosystem of Indian Himalaya. The estimations were conducted at 3 temperatures (15, 25, and 35°C), a range of pH (3.5-11.5), and in presence of supplements including carbon and nitrogen sources, vitamins, and antibiotics. Optimum production of laccase was recorded at 25°C (optimum temperature for fungal growth) and 7.5 pH. The production of enzyme was recorded maximum on day 28 (11.6 ± 0.52 U/L) following a slow decline at day 35 of incubation (10.6 ± 0.80 U/L). Fructose and potassium nitrate (0.2%) among nutritional supplements, chloramphenicol (0.1%) among antibiotics, and folic acid (0.1%) among vitamins were found to be the best enhancers for production of laccase. Relatively lower but consistent production of laccase for a longer period is likely to be an ecologically important phenomenon under low temperature environment. Further, enhancement in production of enzyme using various supplements will be useful for its use in specific biotechnological applications. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/120708","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32263935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-06-30DOI: 10.1155/2014/197938
Norsyuhada Alias, Mu'adz Ahmad Mazian, Abu Bakar Salleh, Mahiran Basri, Raja Noor Zaliha Raja Abd Rahman
{"title":"Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12.","authors":"Norsyuhada Alias, Mu'adz Ahmad Mazian, Abu Bakar Salleh, Mahiran Basri, Raja Noor Zaliha Raja Abd Rahman","doi":"10.1155/2014/197938","DOIUrl":"https://doi.org/10.1155/2014/197938","url":null,"abstract":"<p><p>Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/197938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32561390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-09-16DOI: 10.1155/2014/517164
F Bafort, O Parisi, J-P Perraudin, M H Jijakli
{"title":"Mode of action of lactoperoxidase as related to its antimicrobial activity: a review.","authors":"F Bafort, O Parisi, J-P Perraudin, M H Jijakli","doi":"10.1155/2014/517164","DOIUrl":"10.1155/2014/517164","url":null,"abstract":"<p><p>Lactoperoxidase is a member of the family of the mammalian heme peroxidases which have a broad spectrum of activity. Their best known effect is their antimicrobial activity that arouses much interest in in vivo and in vitro applications. In this context, the proper use of lactoperoxidase needs a good understanding of its mode of action, of the factors that favor or limit its activity, and of the features and properties of the active molecules. The first part of this review describes briefly the classification of mammalian peroxidases and their role in the human immune system and in host cell damage. The second part summarizes present knowledge on the mode of action of lactoperoxidase, with special focus on the characteristics to be taken into account for in vitro or in vivo antimicrobial use. The last part looks upon the characteristics of the active molecule produced by lactoperoxidase in the presence of thiocyanate and/or iodide with implication(s) on its antimicrobial activity. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32742679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-12-10DOI: 10.1155/2014/162962
K Narayanan, V M Subrahmanyam, J Venkata Rao
{"title":"A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles.","authors":"K Narayanan, V M Subrahmanyam, J Venkata Rao","doi":"10.1155/2014/162962","DOIUrl":"https://doi.org/10.1155/2014/162962","url":null,"abstract":"<p><p>The present study was initiated to understand the effect of PLGA concentration, PVA concentration, internal-external phase ratio, homogenization speed, and homogenization time on mean particle size, zeta potential, and percentage drug encapsulation using fractional factorial design. Using PLGA (50-50) as the carrier, hyaluronidase loaded PLGA nanoparticles were prepared using double emulsion solvent evaporation technique. The particle size was analyzed by dynamic light scattering technique and protein content by Lowry method. The study showed that homogenization speed as an independent variable had maximum effect on particle size and zeta potential. Internal-external phase volume ratio had maximum effect on drug encapsulation. Mean particle size also had high dependency on the combined effect of PVA concentration and phase volume ratio. Using fractional factorial design particle size of <400 nm, zeta potential of <-30 mV, and percentage encapsulation of 15-18% were achieved. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/162962","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32965297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-10-08DOI: 10.1155/2014/106363
Renu Singh, Vijay Kumar, Vishal Kapoor
{"title":"Partial Purification and Characterization of a Heat Stable α-Amylase from a Thermophilic Actinobacteria, Streptomyces sp. MSC702.","authors":"Renu Singh, Vijay Kumar, Vishal Kapoor","doi":"10.1155/2014/106363","DOIUrl":"10.1155/2014/106363","url":null,"abstract":"<p><p>A partial purification and biochemical characterization of the α-amylase from Streptomyces sp. MSC702 were carried out in this study. The optimum operational conditions for enzyme substrate reaction for amylolytic enzyme activity from the strain were evaluated. The optimum pH, temperature, and incubation period for assaying the enzyme were observed to be 5.0, 55°C, and 30 min, respectively. The extracellular extract was concentrated using ammonium sulfate precipitation. It was stable in the presence of metal ions (5 mM) such as K(+), Co(2+), and Mo(2+), whereas Pb(2+), Mn(2+), Mg(2+), Cu(2+), Zn(2+), Ba(2+), Ca(2+), Hg(2+), Sn(2+), Cr(3+), Al(3+), Ag(+), and Fe(2+) were found to have inhibitory effects. The enzyme activity was also unstable in the presence of 1% Triton X-100, 1% Tween 80, 5 mM sodium lauryl sulphate, 1% glycerol, 5 mM EDTA, and 5 mM denaturant urea. At temperature 60°C and pH 5.0, the enzyme stability was maximum. α-amylase retained 100% and 34.18% stability for 1 h and 4 h, respectively, at 60°C (pH 7.0). The enzyme exhibited a half-life of 195 min at 60°C temperature. The analysis of kinetic showed that the enzyme has K m of 2.4 mg/mL and V max of 21853.0 μmol/min/mg for soluble potato starch. The results indicate that the enzyme reflects their potentiality towards industrial utilization. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32817162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme ResearchPub Date : 2014-01-01Epub Date: 2014-01-09DOI: 10.1155/2014/812302
Kasim Sakran Abass
{"title":"A Method for Fast Assessment of OP/CB Exposure in the Japanese Quail (Coturnix coturnix japonica) Using Combined Esterases Enzyme Activity as Biomarkers.","authors":"Kasim Sakran Abass","doi":"10.1155/2014/812302","DOIUrl":"https://doi.org/10.1155/2014/812302","url":null,"abstract":"<p><p>The aims of this study were to investigate the presence of different esterase activities in plasma and liver for Japanese quail and to combine determination of both carboxylesterase and cholinesterase as biochemical biomarker in order to identify the effects of carbamate and organophosphate compounds exposure. Carboxylesterase exhibits larger sensitivity to carbamate and organophosphate compounds than to cholinesterase and is present at higher levels. This permitted nature and distribution of carboxylesterase or cholinesterase to be measured. One predominant toxicological form of enzyme level constant in its patterns of motivation and inhibition with cholinesterase was identified in plasma with an apparent Michaelis constant for butyrylthiocholine iodide of 0.394 mM. Carboxylesterase activity in liver was considered by its preferential hydrolysis of the S-phenyl thioacetate. A concentration dependent decrease of carboxylesterase and cholinesterase has demonstrated during in vitro incubation of malathion, parathion, and trichlorfon in the range 0.125-2 mM, while with methomyl was in the range 0.25-4 mM. When quail (n = 15) was exposed orally for 48 h to concentrations of carbamate or organophosphate compounds of 3-200 mg/kg, the percentage inhibition of cholinesterase was in each case larger than that of carboxylesterase and reached statistical significance (P < 0.05) at lower concentrations. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/812302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32115380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}