Essays in biochemistry最新文献

筛选
英文 中文
Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications. 来自(超)嗜热古菌的糖苷水解酶:结构、功能和应用。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-08-11 DOI: 10.1042/EBC20220196
Roberta Iacono, Federica De Lise, Marco Moracci, Beatrice Cobucci-Ponzano, Andrea Strazzulli
{"title":"Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications.","authors":"Roberta Iacono,&nbsp;Federica De Lise,&nbsp;Marco Moracci,&nbsp;Beatrice Cobucci-Ponzano,&nbsp;Andrea Strazzulli","doi":"10.1042/EBC20220196","DOIUrl":"https://doi.org/10.1042/EBC20220196","url":null,"abstract":"<p><p>(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 4","pages":"731-751"},"PeriodicalIF":6.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9986310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling. 利用嗜极羧基酯酶在聚酯解聚和塑料废物回收中的应用。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2023-08-11 DOI: 10.1042/EBC20220255
Gwion B Williams, Hairong Ma, Anna N Khusnutdinova, Alexander F Yakunin, Peter N Golyshin
{"title":"Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling.","authors":"Gwion B Williams, Hairong Ma, Anna N Khusnutdinova, Alexander F Yakunin, Peter N Golyshin","doi":"10.1042/EBC20220255","DOIUrl":"10.1042/EBC20220255","url":null,"abstract":"<p><p>The steady growth in industrial production of synthetic plastics and their limited recycling have resulted in severe environmental pollution and contribute to global warming and oil depletion. Currently, there is an urgent need to develop efficient plastic recycling technologies to prevent further environmental pollution and recover chemical feedstocks for polymer re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic polyesters by microbial carboxylesterases provides an attractive addition to existing mechanical and chemical recycling technologies due to enzyme specificity, low energy consumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. However, the stability and hydrolytic activity of identified natural esterases towards synthetic polyesters are usually insufficient for applications in industrial polyester recycling. This necessitates further efforts on the discovery of robust enzymes, as well as protein engineering of natural enzymes for enhanced activity and stability. In this essay, we discuss the current knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with focus on polyethylene terephthalate (PET), which is one of the five major synthetic polymers. Then, we briefly review the recent progress in the discovery and protein engineering of microbial polyesterases, as well as developing enzyme cocktails and secreted protein expression for applications in the depolymerisation of polyester blends and mixed plastics. Future research aimed at the discovery of novel polyesterases from extreme environments and protein engineering for improved performance will aid developing efficient polyester recycling technologies for the circular plastics economy.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 4","pages":"715-729"},"PeriodicalIF":5.6,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10058357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and function of microbial α-l-fucosidases: a mini review. 微生物α- 1 -聚焦酶的结构与功能综述。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220158
Haiyang Wu, C David Owen, Nathalie Juge
{"title":"Structure and function of microbial α-l-fucosidases: a mini review.","authors":"Haiyang Wu,&nbsp;C David Owen,&nbsp;Nathalie Juge","doi":"10.1042/EBC20220158","DOIUrl":"https://doi.org/10.1042/EBC20220158","url":null,"abstract":"<p><p>Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"399-414"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9409472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Gut bacterial alginate degrading enzymes. 肠道细菌海藻酸盐降解酶。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220123
Mette E Rønne, Mikkel Madsen, Tobias Tandrup, Casper Wilkens, Birte Svensson
{"title":"Gut bacterial alginate degrading enzymes.","authors":"Mette E Rønne,&nbsp;Mikkel Madsen,&nbsp;Tobias Tandrup,&nbsp;Casper Wilkens,&nbsp;Birte Svensson","doi":"10.1042/EBC20220123","DOIUrl":"https://doi.org/10.1042/EBC20220123","url":null,"abstract":"<p><p>Alginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM. Still, numerous studies report on effects of alginates on bacterial communities from digestive tracts of various, predominantly marine organisms feeding on alginate and some of the involved alginate lyases have been characterized. Other studies describe the beneficial impact on gut microbiota elicited by alginates in animal models, for example, high-fat-diet-fed mice addressing obesity or as feed supplements for livestock. Alginates are depolymerized by a β-elimination reaction catalyzed by polysaccharide lyases (PLs) referred to as alginate lyases (ALs). The ALs are found in 15 of the 42 PL families categorized in the CAZy database. While genome mining has led to prediction of ALs encoded by bacteria of the HGM; currently, only four enzymes from this niche have been characterized biochemically and two crystal structures are reported. Alginates are composed of mannuronate (M) and guluronate (G) residues organized in M-, G-, and MG-blocks, which calls for ALs of complementary specificity to effectively depolymerize alginate to alginate oligosaccharides (AOSs) and monosaccharides. Typically, ALs of different PL families are encoded by genes arranged in clusters denoted as polysaccharide utilization loci. Currently, biochemical and structural analyses of marine bacterial ALs contribute to depicting the mode of action of predicted enzymes from bacteria of the HGM.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"387-398"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9703528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Microbial xylanolytic carbohydrate esterases. 微生物木聚糖水解碳水化合物酯酶。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220129
Vladimír Puchart, Peter Biely
{"title":"Microbial xylanolytic carbohydrate esterases.","authors":"Vladimír Puchart,&nbsp;Peter Biely","doi":"10.1042/EBC20220129","DOIUrl":"https://doi.org/10.1042/EBC20220129","url":null,"abstract":"<p><p>This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure-function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"479-491"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. o -粘蛋白降解糖活性酶及其在炎症性肠病中的可能意义。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220153
Aurore Labourel, Jean-Luc Parrou, Céline Deraison, Muriel Mercier-Bonin, Sophie Lajus, Gabrielle Potocki-Veronese
{"title":"O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases.","authors":"Aurore Labourel,&nbsp;Jean-Luc Parrou,&nbsp;Céline Deraison,&nbsp;Muriel Mercier-Bonin,&nbsp;Sophie Lajus,&nbsp;Gabrielle Potocki-Veronese","doi":"10.1042/EBC20220153","DOIUrl":"https://doi.org/10.1042/EBC20220153","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"331-344"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans. 细菌碳水化合物硫酸酯酶靶向宿主聚糖的功能和特异性。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220120
Ana S Luis, Edwin A Yates, Alan Cartmell
{"title":"Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans.","authors":"Ana S Luis,&nbsp;Edwin A Yates,&nbsp;Alan Cartmell","doi":"10.1042/EBC20220120","DOIUrl":"https://doi.org/10.1042/EBC20220120","url":null,"abstract":"<p><p>Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"429-442"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9463720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
N-glycan breakdown by bacterial CAZymes. 细菌酵素分解n -聚糖。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220256
Lucy I Crouch
{"title":"N-glycan breakdown by bacterial CAZymes.","authors":"Lucy I Crouch","doi":"10.1042/EBC20220256","DOIUrl":"https://doi.org/10.1042/EBC20220256","url":null,"abstract":"<p><p>The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"373-385"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10080785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota. 碳水化合物酯酶参与人体肠道菌群对食物成分的去乙酰化。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220161
Sabina Leanti La Rosa, Lars J Lindstad, Bjørge Westereng
{"title":"Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota.","authors":"Sabina Leanti La Rosa,&nbsp;Lars J Lindstad,&nbsp;Bjørge Westereng","doi":"10.1042/EBC20220161","DOIUrl":"https://doi.org/10.1042/EBC20220161","url":null,"abstract":"<p><p>Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"443-454"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/18/ebc-67-ebc20220161.PMC10154613.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9408311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function. 微生物外多糖α-葡聚糖活性的糖苷水解酶:结构和功能。
IF 6.4 2区 生物学
Essays in biochemistry Pub Date : 2023-04-18 DOI: 10.1042/EBC20220219
Takatsugu Miyazaki
{"title":"Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function.","authors":"Takatsugu Miyazaki","doi":"10.1042/EBC20220219","DOIUrl":"https://doi.org/10.1042/EBC20220219","url":null,"abstract":"<p><p>Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"505-520"},"PeriodicalIF":6.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信