{"title":"Heavy metals and sulfate removal from water by means of Al powder-cement-based filtration","authors":"T. Suponik, Z. Różański, M. Popczyk","doi":"10.37190/epe190305","DOIUrl":"https://doi.org/10.37190/epe190305","url":null,"abstract":"Al powder-cement-based filters used to treat contaminated water from a coal mining area were designed and tested. Several of these multicomponent filters, containing quartz sand, Portland cement and water, as well as additional components (Al powder, CaO and CaSO 4 ) in various mass proportions have been prepared. In this respect, an exhaustive analysis of the impact of the individual components on the properties of the filters was conducted to evaluate their efficiency in the removal of heavy metals and SO 42– . Moreover, additional filter properties such as water permeability, uniaxial compressive strength and resistance to frost were also considered. The information gathered revealed that the designed filters pose high efficiency in respect of heavy metal removal (Cu, Cr, Ni, Co, Zn) and also exhibit proper water permeability and high mechanical strength. Based on this analysis, an optimal filter composition is provided. The results reported herein suggest that Al powder-cement-based filters are environmentally sustainable and cost effective for the treatment of water from industrial sites even in cold weather conditions.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on the effectiveness of wastewater purification in medium sand with assisting clinoptilolite layer","authors":"Marek Kalenik, M. Chalecki","doi":"10.37190/epe190208","DOIUrl":"https://doi.org/10.37190/epe190208","url":null,"abstract":"Model investigations of wastewater purification were carried out in a medium sand bed with an assisting natural clinoptilolite layer 0.10 or 0.25 m thick. The effectiveness of wastewater purification related to basic qualitative parameters was in accordance with the Polish standards on sewage disposal into grounds and surface water. Medium sand soil bed with the assisting natural clinoptilolite layer 0.25 m thick showed on average the removal efficiency regarding TSS higher by 3.3%, total nitrogen by 29.3%, total phosphorus by 25.9%, reduction efficiency regarding BOD5 by 1.1% and COD by 15.9% than that with the thinner clinoptilolite layer. The investigations confirmed that natural clinoptilolite with the granulation 1–5 mm can be used to enhance the removal of nitrogen and phosphorus compounds from wastewater with the application of infiltration drainage. However, very good effect of the TSS removal from the wastewater in the investigated soil beds can lead to their fast clogging under the infiltration drainage. Septic tanks should be designed in such a way that they retain as much TSS as possible, e.g., multi-chamber tanks instead of one-chamber ones.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of organic waste for adsorption of Zn(II) and Cd(II) ions","authors":"T. Bakalár, H. Pavolová","doi":"10.37190/epe190203","DOIUrl":"https://doi.org/10.37190/epe190203","url":null,"abstract":"Biosorption of Zn(II) and Cd(II) ions from aqueous solutions onto organic waste – orange peel, hazelnut shell, and walnut shell was studied using batch adsorption experiments. In the biosorption studies, equilibrium metal ion concentration was determined. Experimental data obtained were analysed in terms of Freundlich, Langmuir, Temkin, Dubinin–Radushkevich, Redlich–Peterson, Sips, Toth, and Khan isotherms. The results of the study showed that orange peel, hazelnut shell, and walnut shell can be adequately used as low-cost alternatives for the removal of Zn(II) and Cd(II) ions from aqueous solutions with maximum sorption capacities of 15.51 and 19.8 mg/g, 11.55 and 16.65 mg/g, and 26.60 and 21.10 mg/g, respectively. The highest removal efficiency of Zn(II) and Cd(II) ions was obtained for hazelnut shells. The process was fast and about 90% of metal ions were removed by all the studied biosorbents. The sorption process was possibly chemisorption occurring on a heterogeneous surface.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. M. H. Gardazi, J. A. Shah, T. Ashfaq, T. A. Sherazi, M. Ali, A. Pervez, Naim Rashid, Javed Iqbal, B. Amin, M. Bilal
{"title":"Equilibrium, kinetics and thermodynamic study of the adsorptive removal of methylene blue from industrial wastewater by white cedar sawdust","authors":"S. M. H. Gardazi, J. A. Shah, T. Ashfaq, T. A. Sherazi, M. Ali, A. Pervez, Naim Rashid, Javed Iqbal, B. Amin, M. Bilal","doi":"10.37190/epe190301","DOIUrl":"https://doi.org/10.37190/epe190301","url":null,"abstract":"The study evaluated the adsorption potential of white cedar sawdust (WCS) for dye removal. WCS was chosen from five preferred, abundant waste biomasses from Pakistan. Various parameters such as contact time, adsorbent dose, dye concentration, pH, and particle size were optimized for methylene blue (MB) dye adsorption. The adsorbent was characterized by FTIR, SEM, EDX and BET analyses. The surface area of the adsorbent was 1.43 m 2 ·g –1 and pore volume was 0.000687 cm 3 ·g –1 . The adsorption data best fitted the isotherm models of Langmuir, Temkin, Dubinin–Radushkevich, and Freundlich. The maximum experimental adsorption capacity obtained was 55.15 mg·g –1 , which was in close agreement to the calculated adsorption capacity. Fitness of the pseudo-second order kinetics suggested chemisorption as the rate-limiting step. Thermodynamic study for adsorption was carried out to evalu-ate the Gibbs free energy (∆ G °), enthalpy (∆ H °) and entropy (∆S°). The negative values Δ G ° at the examined temperature range confirmed the spontaneous adsorption of MB onto WCS.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alaa M. AL-MAABREH, A. Al-Rawajfeh, E. AlShamaileh, G. A. Al-Bazedi
{"title":"Mitigation of scale problem in the pumped Disi water to Amman, Jordan","authors":"Alaa M. AL-MAABREH, A. Al-Rawajfeh, E. AlShamaileh, G. A. Al-Bazedi","doi":"10.37190/epe190108","DOIUrl":"https://doi.org/10.37190/epe190108","url":null,"abstract":"Various methods are known to mitigate or prevent scale formation in pipes, rather by chemical addition, e.g., anti-scaling substances, or physically which includes ultrasonic or nanofiltration (NF). Nanofiltration membranes have a selectivity for the multivalent charged ions, so monovalent ions will pass the membrane partly and multivalent ions will be rejected completely. Chemical addition to prevent scale formation is based on justifying water parameters such as pH, alkalinity, and concentrations of ions that form the building units of scale crystal. In order to mitigate the scaling tendency in water pumped from the Disi aquifer to Amman city along its 345 km pipeline, different studies were conducted using simulated plumbing system. This part of the study is concerned with scale mitigation using nanofiltration and addition of chemicals. Nanofiltration was applied to reduce the hardness that causes scale deposition where it rejected around 70.5% of Ca2+, 71.98% Mg2+, 7.72% K+, 29.0% Na+, 66.63% Cl–, 86.51% NO3, 85.72% SO4, and 69.85% CO2. Increasing the concentration of some ions such as Na+, K+ and Cl– keeping the allowable limit gave good results for scale mitigation.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70004954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Smaoui, Salma Mseddi, N. Ayadi, S. Sayadi, J. Bouzid
{"title":"Evaluation of influence of coagulation/flocculation and Fenton oxidation with iron on landfill leachate treatment","authors":"Y. Smaoui, Salma Mseddi, N. Ayadi, S. Sayadi, J. Bouzid","doi":"10.37190/epe190111","DOIUrl":"https://doi.org/10.37190/epe190111","url":null,"abstract":"Landfill leachates (LFL) collected from Sfax (Tunisia) discharge area are characterized by high chemical oxygen demand (COD), ammonium and salts contents. They constitute a source of phytotoxicity and pollution for ground water and surface water resources which requires an adequate treatment process. To evaluate the efficiency of the coagulation/flocculation treatment, special attention was paid to the effect of pH, coagulant and flocculant doses. Then, effect of zero valent iron was also studied alone and in combination with coagulation/flocculation pretreatment. Our results indicate high removal efficiencies by coagulation/flocculation (46% COD and 63% turbidity) and Fenton process (48% COD and 76% turbidity). The combined application of coagulation/flocculation and Fenton revealed higher COD removal (62%) and turbidity reduction (90%). These results showed the applicability of this combined treatment method for the degradation of organic compounds and reduction of the treated leachate toxicity.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on ultrasound assisted desulfurization of light gas oil using inorganic liquid","authors":"Luma H. Mahmood, M. Abid, M. I. Mohammed","doi":"10.37190/epe190401","DOIUrl":"https://doi.org/10.37190/epe190401","url":null,"abstract":"The feasibility of removing sulfur from real light gas oil using inorganic liquids (NaOH, Ca(OH) 2 and HCl) at various concentrations assisted with ultrasonication was investigated in a continuous flow setup. Experimental results showed that at the optimum operating time (40 min), 68% of sulfur was removed under mild conditions using 10 wt. % NaOH. Ultrasonication not only facilitated sulfur removal but also improved gas oil properties by decreasing density and viscosity by 1.40 and 4.42%, respectively, while the cetane number ( CN ) was increased by 7.0%. Solute selectivity ( S ) depending on sulfur mole fraction ( x S ) was correlated using StatPlus 6.7.1.0 software and the following values have been obtained: S = 53.869e –2.552 x S , and S = 29.573 – 41.878 x s for mixtures of 10% Ca(OH) 2 + S-compound + oil, and 10% NaOH + S-compound + oil, respectively. The correlation coefficients ( R 2 ) for the above equations were 0.9813 and 0.9611, respectively. An empirical correlation related to sulfur removal as a function of processing time and solvent concentration was found with R 2 = 0.956. The results of the present work confirmed the feasibility of employing the hybrid method of ultrasonication with using alkaline liquids for sulfur removal.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"142 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Significant waste properties in terms of applicability in the power industry","authors":"M. Nowak, S. Stelmach, M. Sajdak","doi":"10.37190/epe190406","DOIUrl":"https://doi.org/10.37190/epe190406","url":null,"abstract":"The aim of the article is to present the physical and chemical properties of the refuse derived fuel (RDF) substrates, which have a significant impact on the energy recovery process in power plants. The experimental part includes technical (moisture and ash content, net and gross calorific values) and elemental analyses (sulfur, chlorine and mercury content), biomass and non-biomass concentration in the samples. In order to carry out the analysis of reactor slagging and fouling risk, chemical composition of the ash and characteristic ash fusion temperatures were determined. The waste samples are heterogeneous material and their properties are diversified – the moisture content ranges from 1.8 to 29.2 wt. %, the net calorific value from 17.231 to 28.307 MJ/kg, the ash content in the samples from 7.7 to 31.2 wt. %. The S content is in the range from 0.04 to 0.58 wt. %, the Cl content from 0.58 to 2.11 wt. % and the Hg content in the samples from 0.09 to 0.20 mg/kg. It can be observed, that the tested waste is a demanding fuel, because of its unfavorable fouling and slagging properties, which are directly related to the content of oxides with the basic properties.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Jaramillo-Sierra, A. Mercado-Cabrera, R. Peña-Eguiluz, A. N. Hernández-Arias, R. López-Callejas, B. Rodríguez-Méndez, R. Valencia-Alvarado
{"title":"Assessing some advanced oxidation processes in the abatement of phenol aqueous solutions","authors":"B. Jaramillo-Sierra, A. Mercado-Cabrera, R. Peña-Eguiluz, A. N. Hernández-Arias, R. López-Callejas, B. Rodríguez-Méndez, R. Valencia-Alvarado","doi":"10.37190/epe190302","DOIUrl":"https://doi.org/10.37190/epe190302","url":null,"abstract":"In this work, phenol oxidation in aqueous solution promoted by the effect of the oxidizing agents H 2 O 2 , O 3 and UV radiation and their synergy in four different advanced oxidation processes (O 3 , O 3 /UV, H 2 O 2 /O 3 and O 3 /H 2 O 2 /UV) were assayed. Studies were performed with a closed-loop hydraulic circuit set up with a relatively high volume of solution (500 cm 3 ) during 90 min of treatment time. Parameters such as concentration for oxidizing species, pH, presence of UV irradiation were evaluated. The resulting degradation efficiencies were evaluated using GC-MS. The agents here used were se-lected considering their ease of handling and low toxicity, generation of deposited matter or sludge, so a filtration treatment for the analysis of the samples was not required. In all cases, it was observed that with increasing treatment time better degradation efficiencies were obtained. The best results were obtained with the combination of O 3 /H 2 O 2 /UV where up to 95% degradation was attained at pH 9, which is due to active species generated in the process, e.g., O 3 and OH , on the contaminant. SPE was performed for determining the presence of several by-products, mainly: catechol, resorcinol and hy-droquinone, which were identified.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiping Ma, Leping Xu, JUNFENG ZHOU, Kailiang Yang, Guoxiang Li
{"title":"Experimental investigation of seawater scrubbing of SO₂ in turbulent contact absorbers and spray absorbers","authors":"Yiping Ma, Leping Xu, JUNFENG ZHOU, Kailiang Yang, Guoxiang Li","doi":"10.37190/epe190303","DOIUrl":"https://doi.org/10.37190/epe190303","url":null,"abstract":"The SO x emissions of the marine engine are regulated by international maritime conventions. In this paper, the effect of various parameters, including SO 2 partial pressure, liquid to gas ratio (L/G), alkalinity and pH, was investigated by seawater scrubbing experiment in a turbulent contact absorber (TCA) and a spray absorber (SA) on a laboratory scale. The experimental data showed that the desulfurization efficiency of TCA was mainly dependent on the value of L/G and irrelevant to the changing way of L/G; the appropriate L/G of TCA was 2.3 dm 3 /m 3 and pH of effluent water was 2.4–2.8 at the L/G of 1.1–2.8 dm 3 /m 3 . Comparatively, the desulfurization efficiency of increasing liquid flow rate was better than that of decreasing gas flow rate in the SA experiment. At the gas velocity of 1.58 m/s and L/G of 2.3 dm 3 /m 3 , the desulfurization efficiencies and drop pressures of TCA and SA were 75.9% and 42.4%, 690 and 260 Pa, respectively. The results indicate that TCA chosen as an absorber is likely to be a competitive desulfurization technique for controlling marine diesel emission.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70005671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}