{"title":"Cavitation Performance of Steel Substrate and HVOF Sprayed WC-Co-Cr Coatings","authors":"A. Algoburi, R. Ahmed, M. Nazarinia","doi":"10.31399/asm.cp.itsc2023p0119","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0119","url":null,"abstract":"\u0000 The cavitation performance of wear resistant cermet coatings can deteriorate in a corrosive environment. This investigation therefore considered the cavitation resistance in seawater of thermally sprayed High Velocity Oxy Fuel (HVOF) WC-10Co-4Cr coatings deposited on two different substrate materials of carbon steel and austenitic stainless steel. Coatings were deposited using industrially optimised parameters. Cavitation tests were conducted following the ASTM G32 test method in indirect mode, where there was a gap of 0.5 mm between the sonicator and the test surface. A submersed copper cooling coil controlled the temperature of the seawater. The cumulative cavitation erosion mass loss and cavitation erosion rate results are reported. The eroded substrate and coating surfaces were analysed using Scanning Electron Microscopy (SEM) in combination with energy dispersive x-ray analysis (EDX) to understand the failure modes. Coating phases were identified using x-ray diffraction. Results are discussed in terms of the cavitation failure modes and cavitation erosion rates for both the substrate and coated surfaces.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121319794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Steady-State Composition and Microstructure of 42%WC-42%Cr3C2-16%Ni HVOF and Shrouded Plasma Sprayed Coatings at 900°C","authors":"S. Matthews, Francesca O’Neil","doi":"10.31399/asm.cp.itsc2023p0373","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0373","url":null,"abstract":"\u0000 Conventionally, bulk WC and Cr3C2-based carbide compositions have been used independently of each other. However, recent investigations have begun to explore combining these carbides together within the same composite/hardmetal coating system. This research builds on earlier work characterising 42%wt% WC-42%wt% Cr3C2- 16%wt% Ni coatings sprayed under “low”, “medium” and “high” thermal input conditions, to assess their compositions and microstructures after heat treatment in air at 900°C for up to 30 days. Coatings were deposited by HVOF, Ar-He and Ar- H2 shrouded plasmas respectively, onto Alloy 625 substrates with Ni20Cr bond-coats and top-coats. The coating compositions and lattice parameters were quantified by Rietveld peak fitting of XRD patterns. The microstructures were analysed from cross sectional backscatter electron micrographs. Rapid phase development occurred within the first five days, beyond which the compositions and microstructures remained stable. The microstructures retained extremely fine, sub-micron grain sizes, while the carbide phases exhibited high degrees of metastable alloying, even after 30 days at 900°C. The coating compositions are discussed, and a mechanism proposed to account for the rate of development and overall metastable microstructure.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117031355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Independent Control of Particle Temperature and Velocity Using a Novel Powder Preheater Design for Low Pressure Cold Spray","authors":"D. Macdonald, B. Jodoin","doi":"10.31399/asm.cp.itsc2023p0214","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0214","url":null,"abstract":"\u0000 In high-pressure cold spray, the enthalpy of the particle carrier gas has a significant effect on the propellant gas conditions and ultimately on particle impact velocities and temperatures. Through modelling and experimentation, the current work demonstrates that in low-pressure cold spray, the particle carrier gas enthalpy has a minimal effect on the particle velocity and is rather limited to affecting the particle impact temperature. Consequently, particle impact temperature can be controlled independently from impact velocity. This is a valuable tool when dealing with temperature sensitive substrates: low propellant temperatures can be used in combination with high particle temperatures enabling particle deformation while minimizing substrate heat input. Particle preheating was used to inject pure aluminum particles in a commercial low-pressure cold spray to temperatures up to 500°C. This was accomplished without clogging because of the development of a novel particle preheater, which eliminated the particles exposure to hot metal surfaces. Even after substantial spray time, no evidence of wear or clogging was found. The particle preheating resulted in a deposition efficiency increase of 3.6 times when compared to the injection of room temperature particles.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129664010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Synthesis Route for High-Entropy Alloy Feedstock Particles for Cold Spray Following Conventional and Sequential Mechanical Milling Regimes","authors":"Aisa Grace Custodio, G. Saha, C. Aranas","doi":"10.31399/asm.cp.itsc2023p0567","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0567","url":null,"abstract":"\u0000 Material’s tensile strength can be improved by the presence of a body-centered cubic (BCC) phase, which is essential in highstrength applications and highly corrosive environments. Thus, synthesizing a BCC single-phase, equiatomic AlCoCrFeNi high-entropy alloy (HEA) feedstock particle using a highenergy mechanical alloying (HE-MA) method was investigated. The transient alloy particles were developed using a planetary mill at a constant rotational speed of 580 rpm employing milling times in the range of 4 to 24 hours. During the process, stearic acid of 3 wt.% of the precursor composition was used as a process-controlling agent (PCA). Two HE-MA manufacturing regimes were utilized: i) conventional (milling constituent elements simultaneously), and ii) sequential (progressive milling while adding elements in a certain order). In addition to the conventional method, a sequential regime was employed to develop FeNiCoCrAl, wherein individual elements were added every 4 hours to the starting/milled Fe + Ni mixture. Based on the results, the HE-MA FeNiCoCrAl showed a BCC single-phase formation after 24 hours, with no intermetallic or contamination traceability. Finally, a nanoindentation hardness measurement was carried out to support the observed phase transformation before and after the HE-MA process.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"187 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128607536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farrokh Taherkhani, A. List, S. Keller, N. Kashaev, F. Gärtner, T. Klassen
{"title":"Cold Spraying of Inconel 625 Thick Deposits","authors":"Farrokh Taherkhani, A. List, S. Keller, N. Kashaev, F. Gärtner, T. Klassen","doi":"10.31399/asm.cp.itsc2023p0266","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0266","url":null,"abstract":"\u0000 Cold spraying (CS) of high strength materials, e.g., Inconel 625 is still challenging due to the limited material deformability and thus high critical velocities. Further fine tuning and optimization of cold spray process parameters is required, to reach higher particle impact velocities as well as temperatures, while avoiding nozzle clogging. Only then, sufficiently high amounts of well-bonded particle-substrate and particle-particle interfaces can be achieved, assuring high cohesive strength and minimum amounts of porosities. In this study, Inconel 625 powder was cold sprayed on carbon steel substrates using N2 as propellant gas under different refined spray parameter sets and powder sizes for a systematic evaluation. Coating microstructure, porosity, electrical conductivity, hardness, cohesive strength and residual stress were characterized in as-sprayed condition. Increasing the process gas temperature or pressure leads to low coating porosity of less than 1 % and higher electrical conductivity. The as-sprayed coatings show microstructures with highly deformed particles and well bonded internal boundaries. X-ray diffraction reveals that powder and deposits are present as γ- solid-solution phase without any precipitations. By work hardening and peening effects, the deposits show high microhardness and compressive residual stresses. With close to bulk material properties, the optimized deposits should fulfill criteria for industrial applications.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127880953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Lokachari, K. Leng, A. Rincón Romero, T. Hussain
{"title":"Effect of Microstructure on CMAS Interaction of Axial Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings—YSZ & GZ","authors":"S. Lokachari, K. Leng, A. Rincón Romero, T. Hussain","doi":"10.31399/asm.cp.itsc2023p0653","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0653","url":null,"abstract":"\u0000 In the study, Axial Suspension Plasma Spray (SPS) was used to produce a range of columnar microstructures from Yttria Stabilized Zirconia (YSZ) suspension after an extensive experimental design. The optimized microstructure was applied to a multi-layer GZ/YSZ system, in which both layers were sprayed with SPS. In addition to SPS, a new GZ coating using Axial Solution Precursor Plasma Spray (SPPS) was developed and deposited on top of the SPS GZ coating. The durability in the furnace cycling test (FCT), as well as the consequences of CMAS infiltration into the columnar coatings was extensively studied on different microstructures. Preliminary CMAS test on the SPS coatings infiltrated them completely, leading to delamination. To minimize the detrimental effect of CMAS on the underlying SPS, the dense solution precursor GZ layer was aimed to act as a sealant to protect the underlying columnar SPS-GZ layer from molten CMAS infiltration.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133200549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Laser Power on Forming Quality and Crystallization of Amorphous Alloy Prepared by SLM","authors":"Xing-fu Chen, K. Du, Z. Pi, Z. Zheng","doi":"10.31399/asm.cp.itsc2023p0514","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0514","url":null,"abstract":"\u0000 Amorphous alloys have attracted extensive attention due to their unique atomic arrangement and excellent properties. However, the application in practical engineering is seriously limited due to the size, crystallization and other problems. Laser additive manufacturing technology has the characteristics of high heating, cooling rate and point by point melting deposition, which provides a new idea for the preparation of amorphous alloys. Zr50Ti5Cu27Ni10Al8 amorphous alloy was prepared on the surface of pure zirconium substrate by selective laser melting technology. The composition and structure of the samples were characterized. The results show that the samples are mainly composed of amorphous phase, and the crystallization mainly occurs in the superimposed zone of heat affected zone. With the decrease of laser power, the area of crystallization zone and the number of crystallization particles decrease. However, if the laser power is too low, there will be non-fusion defects and cracks, which will seriously affect the forming quality and amorphous rate of amorphous alloy.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132615271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. K. Thoutam, M. S. Lamana, A. Mahdavi, A. Liberati, F. Ben Ettouil, C. Moreau, A. Dolatabadi
{"title":"Influence of HVAF Process Parameters on In-Flight NiCoCrAlY Particle Oxidation and Corresponding Splat Characteristics","authors":"A. K. Thoutam, M. S. Lamana, A. Mahdavi, A. Liberati, F. Ben Ettouil, C. Moreau, A. Dolatabadi","doi":"10.31399/asm.cp.itsc2023p0618","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0618","url":null,"abstract":"\u0000 The deposition of MCrAlX coatings (where M is Ni, Co, Fe, or a combination of these, and X is Y, Si, Ta, Hf, or a combination of these) via thermal spraying has acquired significant importance in industries such as aerospace, power plants, oil, and gas, etc. Among various thermal spray deposition techniques, high-velocity air fuel (HVAF) has shown a growing potential for the deposition of metallic powders which are sensitive to high-temperature oxidation during spraying. Thus, it is essential to understand the in-flight behavior of these metallic particles in the high-velocity, low-temperature HVAF flame. In this work, a NiCoCrAlY powder was sprayed using two sets of HVAF deposition parameters onto stainless steel substrates. In-flight particle diagnostic tools such as AccuraSpray were employed to understand the behavior of these spray particles. The deposited particles were comprised of partially molten particles and fully deformed splats. Samples with higher powder feed rates showed a primary coating buildup on the substrate surface. EDS plots revealed no traces of inflight particle oxidation but contained carbon residue due to the presence of unburnt hydrocarbons from the fuel-rich HVAF-M3 torch. This study provides a preliminary understanding towards the significance of deposition parameters on the in-flight particle oxidation behavior and splat deformation characteristics by HVAF spraying.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130924119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yijun Yao, Wenbo Li, Zhoukun Shi, M. Planche, H. Liao, S. Deng
{"title":"Application of In Situ Observation Techniques for Understanding the Principles of the Cold Spray Coating Formation","authors":"Yijun Yao, Wenbo Li, Zhoukun Shi, M. Planche, H. Liao, S. Deng","doi":"10.31399/asm.cp.itsc2023p0098","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0098","url":null,"abstract":"\u0000 As it has been demonstrated that the use of the observation equipment applied on the spray process helps to gain a better coating in terms of properties, non-intrusive observation equipment (Control Vision Inc's SprayCam) is used in the current work for the observations of the jet and particles during the spray process. The application of such in-situ observation techniques concerns the field of cold spraying and brings new insights into the formation process of cold sprayed coatings. The build-up of coatings operated with different parameters (copper powder, nozzle, etc.) are recorded with an extreme short unit of time and then analyzed with the help of digital techniques such as image processing. The basic theories on cold spraying were previously verified by simulation and then compared to experimental results considering the distribution of flying particles involving in the build-up of the coating. The accumulation of data collected by in situ processing techniques during the spray allows understanding the complete steps of the coating formation consequently could bring the entire cold spraying mechanism to a higher level of research.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"195 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114199390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Shahbazi, H. Vakilifard, R. B. Nair, A. Liberati, C. Moreau, R. S. Lima
{"title":"High Entropy Alloy (HEA) Bond Coats for Thermal Barrier Coatings (TBCs)—A Review","authors":"H. Shahbazi, H. Vakilifard, R. B. Nair, A. Liberati, C. Moreau, R. S. Lima","doi":"10.31399/asm.cp.itsc2023p0659","DOIUrl":"https://doi.org/10.31399/asm.cp.itsc2023p0659","url":null,"abstract":"\u0000 Due to the aggressive operation conditions of turbine hot sections, protective coatings are required to provide oxidation and hot corrosion resistance for superalloy components. Thermal barrier coatings (TBCs) are comprised of a ceramic top coat and a metallic bond coat (BC) and are typically used as thermal protection systems against these aggressive environments. Conventional BC materials are MCrAlX, with M being metals or alloys (e.g., Ni, Co or NiCo) and X being reactive elements such as Y, Hf, Ta, Si. Due to their strength, thermal stability, and oxidation resistance, high-entropy alloys (HEAs) have presented promise for use as BC materials in hightemperature applications. Owing to its cocktail effect, optimally chosen HEAs could help to enhance the hot corrosion resistance of BCs by forming a more continuous, dense, and uniform thermally grown oxide (TGO). Furthermore, HEAs could help to control the diffusion between the bonding layer and substrate in elevated temperature environments. This paper will discuss the thermodynamic, mechanical, and microstructural behaviour of HEAs. Furthermore, the selection and usage of HEAs as BCs will be explored and compared to conventional BCs in TBC systems.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115822509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}