Economic Geology最新文献

筛选
英文 中文
Genesis of the Questa Mo Porphyry Deposit and Nearby Polymetallic Mineralization, New Mexico, USA 美国新墨西哥州Questa Mo斑岩矿床成因及附近多金属成矿作用
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-25 DOI: 10.5382/econgeo.5011
S. Gaynor, J. Rosera, D. Coleman
{"title":"Genesis of the Questa Mo Porphyry Deposit and Nearby Polymetallic Mineralization, New Mexico, USA","authors":"S. Gaynor, J. Rosera, D. Coleman","doi":"10.5382/econgeo.5011","DOIUrl":"https://doi.org/10.5382/econgeo.5011","url":null,"abstract":"\u0000 The Oligocene Latir magmatic center in northern New Mexico is an exceptionally well-exposed volcanoplutonic complex that hosts a variety of magmatic-hydrothermal deposits, ranging from relatively deep, F-rich porphyry Mo mineralization to shallower epithermal deposits. We present new whole-rock chemical and isotopic data for plutonic rocks from the Latir magmatic center, including extensive sampling of drill core samples of intrusive rocks from the Questa porphyry Mo deposit. These data document temporal chemical trends of porphyry-related mineralization that occurred after caldera-forming magmatism and during postcaldera batholith assembly. Silicic magmas were generated multiple times throughout the history of the Latir magmatic center, but few are associated with the formation of a mineral deposit. Whole-rock trace element ratios and Sr, Nd, and Pb isotope compositions vary throughout the protracted history of silicic magmatism. The caldera-forming ignimbrite and early phase of postcaldera intrusions are unmineralized, more enriched in high field strength elements, and generally contain less radiogenic Sr and Pb and more radiogenic Nd than later intrusions. The Questa porphyry Mo deposit formed immediately after the most isotopically primitive phase of the batholith was assembled, ruling out simple reworking of juvenile mantle-derived crust as the source for mineralizing magmas. Rhyolite dikes associated with polymetallic sulfide deposits intruded ~800 k.y. after Mo mineralization, and Nd isotope data indicate that these dikes are associated with different batches of magma and are unrelated to the Mo-mineralizing intrusions at the Questa mine. Together, these data indicate that the source of magmas changed significantly throughout the 10-m.y. history of the magmatic center. We assess multiple genetic models for porphyry-related magmatism against this data set, favoring models with discrete periods of magma genesis from a deep hybridized zone in the lower crust giving rise to the punctuated periods of mineralization. These observations suggest that the formation of mineral deposits within a central magmatic locus is likely the result of the piecemeal assembly of individual hydrothermal-magmatic systems, and that distal and younger polymetallic mineralization commonly observed near known porphyry deposits represents decoupled processes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"45 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85532495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geologic and Geochemical Features of the World-Class Archean Windfall Intrusion-Related Au Deposit, Abitibi Subprovince, Canada 加拿大阿比提比省世界级太古宙横财侵入相关金矿床地质地球化学特征
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-19 DOI: 10.5382/econgeo.5007
Brandon Choquette, D. Kontak
{"title":"Geologic and Geochemical Features of the World-Class Archean Windfall Intrusion-Related Au Deposit, Abitibi Subprovince, Canada","authors":"Brandon Choquette, D. Kontak","doi":"10.5382/econgeo.5007","DOIUrl":"https://doi.org/10.5382/econgeo.5007","url":null,"abstract":"\u0000 The Neoarchean Windfall gold deposit, hosted in the Urban-Barry greenstone belt of the Abitibi subprovince (Quebec, Canada), represents an emerging and significant Au deposit with a resource of 7.4 Moz of Au. It is hosted in 2717 Ma bimodal volcanic rocks that are cut by several generations of calc-alkaline quartz-feldspar porphyry dikes separated into (1) a 2697.6 ± 2.6 Ma group spatially related to Au mineralization and (2) a 2697.6 ± 0.4 Ma group that truncates the earlier dikes and the Au mineralization. The Au zones are structurally controlled and localized to faults and fractures proximal to the contacts of the early quartz-feldspar porphyry dikes; these zones form thin, subvertical, and elongate lenses plunging 35° east-northeast. Gold mineralization, present as both free gold and inclusions in pyrite, occurs (1) in gray quartz veins and stockworks with pyrite and subordinate carbonate and tourmaline and (2) in pervasive to patchy sericite-silica-pyrite-carbonate ± tourmaline ± fuchsite alteration zones. The Au mineralization and associated hydrothermal alteration, along with all the host rocks that include postmineralization intrusions, are overprinted by D2 deformational features that include a penetrative fabric, shear zones, and associated folds. The spatial and temporal association of the quartz-feldspar porphyry intrusions with the Au mineralizing event at the Windfall gold deposit, along with its elemental association (Ag, As, Sb, S, Se, Bi, Te, ± Zn, Cu, Pb, Mo, W), suggests an intrusion-related model and contrasts with the more abundant orogenic gold deposits in the Abitibi greenstone belt. This interpretation has important implications both locally and regionally for Au exploration in Archean greenstone terranes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"35 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80812762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Apatite as a Probe into the Nature and Origin of Hydrothermal Fluids Responsible for U Leaching in the Lujing Granite-Related U Deposits, South China 磷灰石对绿井花岗岩型铀矿床铀浸出热液性质及成因的探讨
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-19 DOI: 10.5382/econgeo.4992
Zhiqiang Yu, Lei-Lei Liu, H. Ling, Peirong Chen, Guofeng Xu, Weifeng Chen, Tianyang Hu, Di Huang
{"title":"Apatite as a Probe into the Nature and Origin of Hydrothermal Fluids Responsible for U Leaching in the Lujing Granite-Related U Deposits, South China","authors":"Zhiqiang Yu, Lei-Lei Liu, H. Ling, Peirong Chen, Guofeng Xu, Weifeng Chen, Tianyang Hu, Di Huang","doi":"10.5382/econgeo.4992","DOIUrl":"https://doi.org/10.5382/econgeo.4992","url":null,"abstract":"\u0000 Hydrothermal fluids have been suggested to be capable of leaching U and other elements (e.g., rare earth elements; REEs) from U-fertile granites to form granite-related U deposits. However, the nature and origin of the hydrothermal fluid responsible for transporting these elements are poorly constrained. Apatite accommodates both U and REEs, and its composition can be modified by hydrothermal fluids with certain compositions. This study investigated in situ chemical and Sr-Nd isotope compositions of primary apatite in altered wall granites from the Lujing U deposits in the Zhuguang batholiths. Large-scale alterations of apatite occurred during the hematitization stage. Uranium was extensively leached out of the apatite, and its total REE concentrations were decreased from as high as 12,667 ppm to a few hundred ppm during the alteration, whereas REE-bearing mineral inclusions were absent in altered apatites. The release of U and REEs was associated with decrease of Na, Mn, and Fe and increase of Ca, Cl, and Eu anomalies in altered regions of apatite. According to apatite compositional variations, the fluid that induced hematitization was oxidizing, rich in Ca and Cl, but poor in Na. The elevated Cl in the fluid is crucial for mobilizing both U and REEs, whereas PO43− can also be a major ligand for U6+ transport given the massive dissolution of apatite during the leaching process. Altered regions of apatite contain high radiogenic strontium, implying assimilation of the fluid by clastic sediments in the adjacent red-bed basins sourced from the Precambrian crystalline basement rocks. The oxidizing, Ca- and Cl-rich, but Na- and F-poor fluid that induces hematitization shows significant potential in leaching U and REEs from the wall granite and providing ore-forming materials for U mineralization.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"4 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79257003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tourmaline Breccias from the Río Blanco-Los Bronces Porphyry Copper District, Chile: Constraints on the Fluid Source and the Utility of Tourmaline Composition for Exploration 智利Río Blanco-Los Bronces斑岩铜矿区碧玺角砾岩:流体来源约束及碧玺成分在勘探中的应用
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-13 DOI: 10.5382/econgeo.4991
Michael Hohf, R. Trumbull, Patricio Cuadra, M. Solé
{"title":"Tourmaline Breccias from the Río Blanco-Los Bronces Porphyry Copper District, Chile: Constraints on the Fluid Source and the Utility of Tourmaline Composition for Exploration","authors":"Michael Hohf, R. Trumbull, Patricio Cuadra, M. Solé","doi":"10.5382/econgeo.4991","DOIUrl":"https://doi.org/10.5382/econgeo.4991","url":null,"abstract":"\u0000 Tourmaline-cemented breccia bodies host much of the ore in the Río Blanco-Los Bronces porphyry Cu-Mo deposits. We determined the chemical and B isotope composition of tourmaline as well as S isotope ratios of anhydrite and sulfide minerals to shed light on the composition and origin of mineralizing fluids. Also, the utility of tourmaline as an indicator mineral was tested by comparing mineralized and barren breccias. Tourmaline in mineralized samples has a narrow Mg range (1.5–2 apfu) and variable, generally low Al contents (4–6.5 apfu). A strong negative correlation of Al with Fe indicates monovalent substitution of Al and Fe3+, implying relatively oxidizing fluids. In contrast, tourmaline from barren breccias has a narrower Al range (6–7 apfu), lower and more variable Mg (0.2–2.5 apfu), and a strong negative Mg-Fe correlation, suggesting more reduced fluids with a dominance of Fe2+. These features and the implications of redox contrast may have exploration significance. Tourmaline from all breccia samples yielded δ11B values from 1.8 to 7.9‰. A magmatic source of boron is concluded from the identical B isotope values of granite-hosted tourmaline in the district (1.2–7.7‰) and from the similar range of regional volcanic and porphyry rocks in the Central Andes. The δ34S values of coexisting anhydrite (11.6–14.5‰) and chalcopyrite (–1.5 to –0.2‰) in mineralized breccia give S isotope exchange temperatures of 377° to 437°C, consistent with fluid inclusion temperatures. Total sulfur δ34Sfluid estimates between 1.4 ± 3.9 and 8.8 ± 1.3‰ are broadly consistent with a magmatic source but not well constrained. However, published O and H isotope ratios of quartz and tourmaline from the Río Blanco-Los Bronces breccias have a clear magmatic signature, so this is the preferred scenario. Mass balance simulations of the boron budget show that typical magma flux rates, water contents, and boron concentration for the Central Andes can produce the estimated 107 tons of boron in the Río Blanco-Los Bronces breccias within the 4-m.y. duration of porphyry intrusions if (1) magma accumulated and evolved at midcrustal levels before emplacement and (2) boron partitioned strongly to the fluid phase (DBfluid/melt> 3).","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"51 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78634139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APATITE VOLATILE CONTENTS OF PORPHYRY Cu DEPOSITS CONTROLLED BY DEPTH-RELATED FLUID EXSOLUTION PROCESSES 斑岩型铜矿床磷灰石挥发性含量受深度相关流体溶出过程控制
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-13 DOI: 10.5382/econgeo.5000
Ming‐Liang Huang, Jing-jing Zhu, M. Chiaradia, R. Hu, Leiluo Xu, X. Bi
{"title":"APATITE VOLATILE CONTENTS OF PORPHYRY Cu DEPOSITS CONTROLLED BY DEPTH-RELATED FLUID EXSOLUTION PROCESSES","authors":"Ming‐Liang Huang, Jing-jing Zhu, M. Chiaradia, R. Hu, Leiluo Xu, X. Bi","doi":"10.5382/econgeo.5000","DOIUrl":"https://doi.org/10.5382/econgeo.5000","url":null,"abstract":"\u0000 Porphyry Cu deposits are formed by Cu- and volatile (e.g., Cl, S)-rich fluids exsolved from underlying magma reservoirs. Intuitively, higher magmatic Cl and S contents likely correspond to higher magma fertility. However, the Cl contents of syn-ore magmatic apatite, one of the major Cl-bearing mineral phases in magmas, are highly variable among deposits (from <0.1 to >2 wt %). These variations may be controlled by different timing of apatite crystallization relative to fluid saturation among deposits, but the causes of these different relative timings remain obscure. Here we compile existing chemical data of magmatic apatite and amphibole phenocrysts from 25 porphyry Cu deposits worldwide and use these data to calculate magmatic physical-chemical conditions, such as water contents and magma reservoir depths. We find that the porphyry Cu deposits associated with deeper magma reservoirs are characterized by systematically higher magmatic H2O contents and apatite Cl, but lower apatite F contents and F/Cl ratios compared to shallower deposits. These correlations are best explained by early fluid exsolution and Cl loss that predate apatite crystallization in shallower porphyry Cu systems, which leads to elevated apatite F/Cl ratios. This is supported by the common occurrence of primary fluid inclusions in apatite from shallower systems. Postsubduction porphyry Cu deposits are normally associated with lower apatite Cl contents and shallower magma reservoirs, which is attributed to their formation under relatively extensional tectonic regimes. Our results demonstrate that the magma reservoir depth exerts an important control on the timing of fluid exsolution and accompanying Cl loss. In contrast, relatively high and constant apatite S content among deposits is minimally affected by fluid exsolution, possibly due to buffering of early-saturated sulfate in oxidized and S-rich magmas, and therefore might be used as a better potential fertility indicator than Cl.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"516 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77124328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District, Sudan 黄铁矿作为成矿过程的微结构和地球化学示踪剂,苏丹Gabgaba地区造山带金矿床
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-13 DOI: 10.5382/econgeo.5001
Célestine Berthier, Julien Perret, A. Eglinger, A. André-Mayer, J. Feneyrol, A. Voinot, Y. Teitler, Rémi Bosc
{"title":"Pyrite as a Microtextural and Geochemical Tracer of Ore-Forming Processes, Central Zone Orogenic Gold Deposit, Gabgaba District, Sudan","authors":"Célestine Berthier, Julien Perret, A. Eglinger, A. André-Mayer, J. Feneyrol, A. Voinot, Y. Teitler, Rémi Bosc","doi":"10.5382/econgeo.5001","DOIUrl":"https://doi.org/10.5382/econgeo.5001","url":null,"abstract":"\u0000 Gold deposition in structurally controlled deposits is triggered by changes in the mineralizing fluid conditions. Recent research has demonstrated that in deposits with a well-established paragenesis, the processes that control the ore-forming fluid conditions, and thus the gold timing and deposition, can be inferred from the study of both textural and chemical characteristics of ore-bearing minerals such as sulfides, which are ubiquitous in almost every gold deposit type. In this contribution, we carried out a coupled investigation of (1) microscopic-scale expression of regional deformation, (2) textures of mineralized veins and pyrite generations, and (3) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element concentrations in pyrite from the Neoproterozoic Central Zone gold deposit, located in the poorly studied Gabgaba gold district, central Keraf suture, Sudanese Nubian shield.\u0000 The Central Zone gold mineralization is associated with late-collisional Keraf strike-slip shearing. It is expressed by visible gold-bearing quartz-ankerite-(albite) conjugate veins hosted by metagranitoids surrounded by metasediments. Some structurally lattice-bound gold occurs in proximal As-Au-Ni–enriched pyrite associated with sericite-albite-ankerite alteration. Vein textures and proximal pyrite oscillatory zoning and geochemical signatures indicate that vein infilling occurred as a response to sudden pressure drops and boiling of the mineralizing fluid. We therefore interpret the Central Zone deposit as a typical orogenic gold deposit, with microtextural evidence and geochemical data supporting the existence of earthquake-induced fault-valve processes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"1 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78365777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ultramafic-Hosted Ni-Cu-Co-(As) Mineralization from an Ancient Oceanic Transform Fault Zone in the Troodos Ophiolite, Cyprus: An Analogue for Ultramafic Sea Floor Massive Sulfide Mineralization? 塞浦路斯Troodos蛇绿岩古大洋转换断裂带的超镁铁质Ni-Cu-Co-(As)成矿作用:与超镁铁质海底块状硫化物成矿作用类似?
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-13 DOI: 10.5382/econgeo.4996
Andrew J. Martin, C. MacLeod, K. McFall, I. McDonald, J. Jamieson, S. Cox
{"title":"Ultramafic-Hosted Ni-Cu-Co-(As) Mineralization from an Ancient Oceanic Transform Fault Zone in the Troodos Ophiolite, Cyprus: An Analogue for Ultramafic Sea Floor Massive Sulfide Mineralization?","authors":"Andrew J. Martin, C. MacLeod, K. McFall, I. McDonald, J. Jamieson, S. Cox","doi":"10.5382/econgeo.4996","DOIUrl":"https://doi.org/10.5382/econgeo.4996","url":null,"abstract":"\u0000 Accumulations of sulfide minerals that are enriched in Ni-Cu-Co-(As) occur as sea floor massive sulfide (SMS) deposits associated with ultramafic rock types on the sea floor and in ophiolite terranes as Outokumpu-type mineralization. In this study we focus on similar mineralization at Lakxia tou Mavrou in the Limassol Forest Complex of Cyprus, which represents the on-land exposure of an oceanic transform fault zone preserved within the Troodos ophiolite. Mineralization here consists of massive lenses of pyrrhotite associated with veins of isocubanite, chalcopyrite, Co pentlandite, and chrome spinel hosted in serpentinized mantle peridotite. We reexamine the field context of mineral occurrences and use in situ mineral chemistry, element mapping, and sulfur isotope ratios (δ34S) to constrain metal sources and provide an updated paragenetic model for Lakxia tou Mavrou. Highly variable S/Se ratios (304–108,571), a depletion in platinum group elements relative to mantle values, and an average δ34S value of –3.7 ± 2.4‰ (1σ, n = 17) in sulfide minerals support a hybrid hydrothermal and magmatic origin for the mineralization. Metals at Lakxia tou Mavrou were sourced from both the serpentinization of peridotites and from crosscutting intrusions, with later intrusions into the already serpentinized mantle lithosphere host providing a heat source to drive prolonged hydrothermal circulation. The reexamination of the field context of mineralization shows that the Ni-Cu-Co-(As) mineralization at Lakxia tou Mavrou originally formed because of the fault-guided intrusion of hot primitive magma bodies into serpentinized shallow mantle lithosphere in the active domain of an ocean-floor transform fault zone. The mineralization was subsequently partially disrupted by structures related to emplacement of the Troodos ophiolite. We show that the relationship between serpentinization, magmatism, and hydrothermal circulation at Lakxia tou Mavrou can be used to understand the formation of ultramafic-hosted SMS deposits in transform fault and other ultramaficdominated slow- and ultraslow-spreading mid-ocean ridge settings.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"30 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90431516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two Decades of Monitoring Hydrothermal Plumes at the Brothers Submarine Volcano, Kermadec Arc, New Zealand 新西兰克马德克弧兄弟海底火山的热液羽流监测二十年
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-02 DOI: 10.5382/econgeo.4998
S. Walker, C. D. de Ronde
{"title":"Two Decades of Monitoring Hydrothermal Plumes at the Brothers Submarine Volcano, Kermadec Arc, New Zealand","authors":"S. Walker, C. D. de Ronde","doi":"10.5382/econgeo.4998","DOIUrl":"https://doi.org/10.5382/econgeo.4998","url":null,"abstract":"\u0000 Brothers volcano is arguably the most well-studied submarine arc volcano on Earth. Between 1996, when massive sulfides were first recovered by dredging, and 2018, when International Ocean Discovery Program (IODP) Expedition 376 recovered cores from as deep as 453 m below the sea floor at two chemically distinct hydrothermal upflow zones, over 60 conductivity-temperature-depth (CTD) vertical casts and tow-yo operations mapped hydrothermal plumes over and around the edifice by employing hydrothermal tracer-specific sensors. These surveys started in 1999 and were completed during nine separate expeditions at one- to three-year intervals, except for a six-year gap between 2011 and 2017. Hydrothermal plume distributions over this two-decade period show variability in the intensity and vertical rise height of plumes from the four main vent fields (Upper Cone, Lower Cone, NW Caldera, and Upper Caldera, with the latter not discovered until 2017). Upper Cone plumes were more intense than all other sites in 1999, 2002, 2007, and 2009, then significantly diminished from 2011 to 2018. The Lower Cone plume was the most intense in 2004, then the NW Caldera site became the dominant source of hydrothermal particles from 2011 to 2018. Despite the gap of six years between 2011 and 2017, hydrothermal output appears to have increased within the caldera sometime after the 2009 survey while simultaneously decreasing in intensity at the cone sites. This supports other evidence of linkages between the cone and caldera sites in the deep hydrothermal circulation system, and may be related to the predicted deepening of hydrothermal circulation, infiltration of seawater to facilitate “mining” of magmatic brines, and modulation of subseafloor mineralization processes associated with a modeled, pulsed injection of magmatic gasses. The surveys also revealed ways in which the highly variable regional hydrographic environment impacts the flux of hydrothermal products to the surrounding ocean. Plumes from sources located above the caldera rim disperse hydrothermal components without hindrance, but particles and heat from sources within the caldera become trapped and are dispersed episodically by caldera-flushing events. While on site for 18 days in 2018, repeat CTD casts into the deepest part of the caldera, which was isolated from the surrounding ocean, showed a progressive increase in temperature, representing a net heat flux of 79 MW from conductive and advective sources deeper than 1,570 m.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"68 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87634418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geology of Winu-Ngapakarra, Great Sandy Desert of Western Australia, a Recently Discovered Intrusion-Related Cu-Au Deposit 西澳大利亚大沙漠Winu-Ngapakarra的地质——一个新近发现的侵入性铜金矿床
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-01 DOI: 10.5382/econgeo.5005
H. Dalstra, A. Black, I. Mudrovska
{"title":"Geology of Winu-Ngapakarra, Great Sandy Desert of Western Australia, a Recently Discovered Intrusion-Related Cu-Au Deposit","authors":"H. Dalstra, A. Black, I. Mudrovska","doi":"10.5382/econgeo.5005","DOIUrl":"https://doi.org/10.5382/econgeo.5005","url":null,"abstract":"\u0000 The Winu-Ngapakarra Cu-Au deposit (Winu) was discovered in late 2017. Winu is hosted in metamorphosed massive sandstones, siltstones, and lesser mafic rocks that are possible distal and deep-water correlatives of the Malu Formation of the Yeneena basin, also host to the large Telfer Au-Cu deposit. Structure at Winu is dominated by an inclined dome formed through interference between NNW- and WNW-trending folds. Copper-gold mineralization occurs in en echelon left-stepping lodes with strike lengths between 350 and 750 m and vertical depths exceeding 750 m, northerly trends, and moderate easterly dips. These higher-grade lodes are surrounded by an extensive halo of low-grade mineralization. Two gold-rich lodes in the southeast part of the Winu deposit strike roughly easterly, toward a gold-rich satellite deposit (Ngapakarra) approximately 2 km east of Winu.\u0000 Mineralization at Winu is hosted by numerous thin, brittle veins and breccias. At least four distinct vein sets associated with Cu-Au mineralization are recognized: V1 – early, weakly mineralized K-feldspar-white mica stockworks; V2 – transitional magmatic-hydrothermal K-feldspar–rich veins; V3 – quartz-sulfide–rich veins, breccias, and fractures and quartz-bismuth-gold veins with similar timing; and V4 – poorly mineralized quartz veins. Barren carbonate-, chlorite-, white mica-, and pyrite-rich fractures (V5), breccias, and faults as well as thin dolerite dikes cut mineralization at Winu. Re-Os dating of molybdenite intergrown with chalcopyrite yielded ages of 658 to 655 Ma for the mineralized veins at Winu, and Ar-Ar dating of biotite yielded 619 Ma for an unmineralized post-ore quartz-biotite vein. A well-developed supergene chalcocite blanket overlies the primary mineralization.\u0000 Element associations and vein and alteration textures and mineralogy classify Winu as an intrusion-related Cu-Au deposit of Neoproterozoic age. Although it shares features with the reduced porphyry copper-gold group, other features, such as the dominance of pyrite over pyrrhotite and the presence of trace amounts of sulfate minerals in the mineralization, are more in accordance with oxidized intrusion-related systems. Mineralization at Winu was most likely triggered by rapidly changing stress fields during the Paterson orogeny and cooling of multiple fluid pulses above an intruding granite pluton that progressively decreased in temperature over time.\u0000 Winu is unique in this region in that it preserves evidence for an early, reduced intrusion-related gold system overprinted by a more oxidized intrusion-related copper system.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"67 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89177107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late-Stage Low-Temperature Hydrothermal Alteration Overprint at the East Zone in the Red Chris Porphyry Cu-Au Deposit, Northwestern British Columbia, Canada 加拿大不列颠哥伦比亚省西北部红克里斯斑岩铜金矿东段晚期低温热液蚀变套印
IF 5.8 1区 地球科学
Economic Geology Pub Date : 2023-03-01 DOI: 10.5382/econgeo.4997
Jessica R. Norris, R. Tosdal, Joanna L. Lipske, Alan J. Wilson
{"title":"Late-Stage Low-Temperature Hydrothermal Alteration Overprint at the East Zone in the Red Chris Porphyry Cu-Au Deposit, Northwestern British Columbia, Canada","authors":"Jessica R. Norris, R. Tosdal, Joanna L. Lipske, Alan J. Wilson","doi":"10.5382/econgeo.4997","DOIUrl":"https://doi.org/10.5382/econgeo.4997","url":null,"abstract":"\u0000 High- and intermediate-temperature alteration assemblages at the East zone in the Red Chris porphyry Cu-Au deposit, northwestern British Columbia, Canada, are varyingly overprinted by a lower-temperature intermediate argillic alteration assemblage composed of illite-kaolinite-hematite-carbonate. The intermediate argillic assemblage extensively overprinted the upper 600 m of the porphyry deposit and is present discontinuously to depths of 1,500 m below the premining surface. Kaolinite is dominant in shallow levels and gradually diminishes with depth, replaced by illite as the dominant clay mineral. Hematite replaced hydrothermal and igneous magnetite, but the intensity diminishes with depth. Mixtures of ankerite, dolomite, siderite, and calcite replaced mafic silicates and formed veins. Oxygen and hydrogen isotopes confirm a magmatic fluid source for the potassic assemblages preserved at depth as well as for the overprinted phyllic assemblage in the upper part and flanks of the East zone. In contrast, the superposed intermediate argillic assemblages formed by a mixture of magmatic and meteoric fluids. Sulfide minerals and sulfur isotopes retain zonal patterns for porphyry Cu deposits and appear largely unaffected by the overprinted intermediate argillic assemblage. Carbon and oxygen isotopes in carbonate vary with depth that may reflect a thermal gradient as a rising fluid cooled. The intermediate argillic assemblage is spatially associated with and overprinted on as yet undated late monzodioritic dikes—the youngest phase in the host Late Triassic Red stock. The relative age relationships and stable isotopic geochemistry indicate the intermediate argillic alteration assemblage represents the flux of magmatic-derived hydrothermal fluid that mixed with external fluid and thus represents either the last fluid pulse in the porphyry Cu deposit or a younger, temporally distinct hydrothermal fluid.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"16 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72619771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信