{"title":"Volumes Ratio Optimization in a Cascade Anaerobic Digestion System Producing Hydrogen and Methane","authors":"E. Chorukova, I. Simeonov, L. Kabaivanova","doi":"10.2478/eces-2021-0014","DOIUrl":"https://doi.org/10.2478/eces-2021-0014","url":null,"abstract":"Abstract As focus of humans has turned to renewable energy, the role of anaerobic digestion has started to become economically viable. Reducing the volume of agro-wastes for the generation of gaseous and liquid fractions with energy carriers and valuable products is an enormous challenge. A two-stage anaerobic digestion process consisting of hydrogenic stage followed by methanogenic stage was studied in a laboratory scale. Five simple nonlinear models of this continuous cascade process were studied in order to determine the optimal ratio of working volumes of bioreactors, in view of maximising energy production. This ratio was reported for all adopted models. The optimal ratio (maximal energy production criterion) depends of the adopted mathematical model. Static characteristics of both bioreactors were obtained using Symbolyc toolbox of Matlab. Numerical experiments concerning dynamics of the main variables of both bioreactors for these models using Simulink of Matlab are performed for different step changes of the dilution rate of the first bioreactor, together with the influence of the substrate (acetate) inhibition for one of the models. The value of the constant of inhibition plays an important role on the admissible interval of the dilution rate. The developed idea could serve for optimally designed experiments of anaerobic digestion for production of hydrogen and methane from lignocelluloses wastes (wheat straw) in two phase process.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"68 3 1","pages":"183 - 200"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73766139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Issue of Shading Photovoltaic Installation Caused by Dust Accumulation on the Glass Surface","authors":"M. Rudnicka, E. Klugmann-Radziemska","doi":"10.2478/eces-2021-0013","DOIUrl":"https://doi.org/10.2478/eces-2021-0013","url":null,"abstract":"Abstract The issue of accumulation of dust and other pollutants on the surface of photovoltaic modules was thoroughly analysed over the years. One of the first surveys in this field of knowledge linked pollutant accumulation on the module surface with transmittance loss of its glass covering, which leads to lessened amount of solar radiation reaching solar cells. First stage of this accumulation process is linear transparency loss, and second stage - molecule agglomeration and settlement some grains on the already existing layer of dust. Additionally, the pace of working parameters reduction for photovoltaic installation is influenced by the type of dust itself. Molecules with smaller grains cover the surface much more densely, therefore limiting the amount of light passing though the top glass layer far more than molecules with bigger grains. The aim of the carried out study was to find the relationship between dust surface density and change in electrical parameters. Such approach makes it possible to compare electrical and physical parameters of different photovoltaic modules. Additionally, glass coverage itself was noted to have a significant impact on the overall decrease in working parameters of PV modules.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"26 1","pages":"173 - 182"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81626223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Gondek, M. Mierzwa-Hersztek, M. Kopeć, I. Spałek
{"title":"Compost Produced with Addition of Sewage Sludge as a Source of Fe and Mn for Plants","authors":"K. Gondek, M. Mierzwa-Hersztek, M. Kopeć, I. Spałek","doi":"10.2478/eces-2021-0019","DOIUrl":"https://doi.org/10.2478/eces-2021-0019","url":null,"abstract":"Abstract Direct application of sewage sludge to soil is controversial due to, among others, its highly variable composition, odour, and risks for health. The obtained composts with the addition of sewage sludge were tested for the contents and availability of manganese and iron. Once composts were applied to the soil, their effect on the content and availability of Mn and Fe in soil and bioaccumulation in the plant were determined. The addition of sewage sludge enriched composts with manganese and iron, but did not increase the content of water-extracted forms of Mn and Fe. The compost with addition of biochar had more organic matter-bound forms of Mn and Fe. Composts amended with sewage sludge had lower effect on the amount of Poa pratensis L. biomass than maize straw compost. The content of Mn and Fe in Poa pratensis L. was in the range permissible for biomass used as fodder. Smaller addition of all composts to the soil significantly increased the content of mobile manganese forms; however, neither the type nor the dose had effect on the content of iron mobile forms. There was no significant differences in the content of organic matter-bound forms of Mn and Fe in soil after the application of composts.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"67 1","pages":"259 - 275"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80745313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Bandurska, P. Krupa, A. Berdowska, I. Jatulewicz, I. Zawierucha
{"title":"Mycoremediation of Soil Contaminated with Cadmium and Lead by Trichoderma sp.","authors":"K. Bandurska, P. Krupa, A. Berdowska, I. Jatulewicz, I. Zawierucha","doi":"10.2478/eces-2021-0020","DOIUrl":"https://doi.org/10.2478/eces-2021-0020","url":null,"abstract":"Abstract Conducted research determined the effect of the Trichoderma fungi on the presence of cadmium and lead ions in the soil contaminated by mentioned elements. The aim of the study was to demonstrate whether the fungi of this kind can contribute to remediation of soil by the immobilization of heavy metals. Experiments were conducted in laboratory conditions. The vaccine containing spores of Trichoderma asperellum was introduced into the soil contaminated with cadmium and lead by direct injection. Analyses of the soluble fraction of selected heavy metals were performed after 3 and 15 days of cultivation using atomic absorption spectrometry (AAS). Statistical significant positive effects on the immobilization of lead ions and no statistical differences in inhibition of cadmium translocation were observed. The results showed that Trichoderma fungi are suited to support the process of environment remediation by removal of lead. This suggests possible application of Trichoderma asperellum in mycoremediation and supporting role in phytoremediation of soil.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"66 1","pages":"277 - 286"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77494707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors","authors":"Nele Jaschke, T. Schmidt-Baum","doi":"10.2478/eces-2021-0015","DOIUrl":"https://doi.org/10.2478/eces-2021-0015","url":null,"abstract":"Abstract This study evaluates the common process and set-up design of a static compost bioreactor for heat recovery. A technology, which fits the goal of a sustainable, growing bioeconomy which combines the utilization of compost heat and compost material. Interest on this technology has been growing the last years but precise data of pilot scale reactors is rare. Data is required to adjust the process for custom needs and further technical development. Therefore, lignin-cellulose based biomass was composted in unaerated cylindrical compost reactors size 20 to 70 m3 for 140 days. The biomass comes with C:N ratio of about 25:1, water content of 43-48 %, organic matter content of 40.6 % d.m. and calorific value of 8.3 MJ/kg d.m. Spatial distribution of temperature and gas concentration (oxygen, carbon dioxide, methane) within the reactor shows methane production of the anaerobic core area. Maximum thermal power of 5.2 kW from a 63 m3 reactor with average temperature of heating flow about 40 °C was reached. Maximum recovered heating power of 4.8 MJ/kg d.m. was calculated for an operation of 6 month. This corresponds to 50 % of the measured calorific value. Biggest influence factors detected on the recovered heating power of the pilot scale reactor has been the size of reactor, the set up quality and the control of heat exchanger. The spatial correlation between heat production and aerobic digestion suggests a technical development in terms of aeration.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"27 1","pages":"201 - 217"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88355908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Removal of Lead(II) and Zinc(II) from Aqueous Solutions Applying Fibber Hemp (Cannabis sativa L.)","authors":"D. Paliulis","doi":"10.2478/eces-2021-0017","DOIUrl":"https://doi.org/10.2478/eces-2021-0017","url":null,"abstract":"Abstract Lead and zinc are heavy metals with toxic properties. These chemical elements are found in wastewater. The article deals with the removal of lead(II) and zinc(II) ions from polluted water using adsorption. As object of researches was selected natural polymer - fibber hemp (Cannabis sativa L.). Big quantities of fibber hemp are produced as waste in textile, agricultural industry, and therefore their usage could help to solve two problems -reducing quantity of fibber hemp as waste and reducing of water pollution by heavy metals. Pb(II) and Zn(II) ions adsorption with fibber hemp was investigated for contact time, pH, and heavy metal ions concentration impact. Pb(II) and Zn(II) ions biosorption rate was highest within the first hour, with optimal their biosorption recorded at pH = 5.0. Highest lead and zinc ions removal efficiency was recorded after 240-480 min and reached 60.5 and 61.7 % respectively. This study demonstrated the applicability and effectiveness of fibber hemp in lead and zinc ions removal, which could be applied for the sewage treatment plant in small scale.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"45 1","pages":"229 - 239"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80854847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Human Activities in the Coastal Zone of Laizhou Bay","authors":"Min Wang, Mei Han, Hongkuan Hui, Yunlong Li","doi":"10.2478/eces-2021-0016","DOIUrl":"https://doi.org/10.2478/eces-2021-0016","url":null,"abstract":"Abstract The serious destruction of resources and environment in Laizhou Bay has attracted extensive attention of researchers. This study mainly analysed the changes of fish structure and environment in the coastal zone of Laizhou Bay caused by human activities. By consulting literatures and field measurements, the changes of dominant fish species, coastline and sea water intrusion were analysed. The results showed that dominant fish species in Laizhou Bay change from high-economic species to low-economic species under the influence of human activities, and the coastline erosion was serious, and the area of sea water intrusion was also increasing year by year. It is concluded from the research results that human activities had a significant impact on the structure of fish school and the environment. It is necessary to arrange human activities in an appropriate amount to reduce the overexploitation of resources in order to restore the fishery resources and environment in Laizhou Bay.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"170 1","pages":"219 - 227"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73151366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamlile Khumalo, G. Heltai, A. Várhegyi, M. Horváth
{"title":"Mobility of Potentially Toxic Elements from the Abandoned Uranium Mine’s Spoil Bank","authors":"Lamlile Khumalo, G. Heltai, A. Várhegyi, M. Horváth","doi":"10.2478/eces-2021-0018","DOIUrl":"https://doi.org/10.2478/eces-2021-0018","url":null,"abstract":"Abstract This study is part of the ongoing environmental monitoring program of the abandoned Mecsek uranium mine during the remediation period. During this program on the recultivated No.1 spoil bank, the radioactivity and the potentially toxic element (PTE) contents in the covering soil had shown some anomalies which refers to possible migration alongside the slope. Therefore, in a previous study, soil and plant samples were collected from top to bottom position of the slope and the total element content was determined by multi-elemental inductively coupled plasma-optical emission spectrometry. The results have indicated that there was a high possibility for PTEs to be mobile and available for uptake by plants. To confirm this indication in the present study for the soil samples the BCR sequential extraction procedure was applied to characterise the environmental mobility of PTEs, and it was compared with soil pH and cation exchange capacity (CEC). The results indicated that the ratio of Cd, Co, Mn, Pb, and U in the non-residual fractions ranged between 36.8 to 100 % and increased from top to bottom direction. The comparison showed that the samples with the lowest pH and CEC had the most mobility of the PTEs. The distribution of U, Cd, Mn, Co, and Pb in fractions indicated that some parts of the spoil deposit require additional steps to hinder the migration through the covering soil layer, and the BCR sequential extraction procedure has proven to be useful in providing information for the planning and management of remediation operations.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"19 1","pages":"241 - 258"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79850907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Passive and Active Biomonitoring of Atmospheric Aerosol with the Use of Mosses","authors":"N. Słonina, P. Świsłowski, M. Rajfur","doi":"10.2478/eces-2021-0012","DOIUrl":"https://doi.org/10.2478/eces-2021-0012","url":null,"abstract":"Abstract The aim of the carried out research was passive and active biomonitoring of woodlands in the Opole province. Pleurozium schreberi mosses were used during the research, in which the following heavy metals concentrations were determined: Mn, Fe, Ni, Cu, Zn, Cd and Pb. Concentrations were determined with absorption atomic spectrometry (AAS). On the basis of the carried out research, concentrations of heavy metals in moss samples used in the passive and active biomonitoring methods were compared. The obtained results indicate that Pleurozium schreberi mosses can be successfully used in both passive and active biomonitoring, however, these methods should not be used interchangeably in a defined study area. On the basis of carried out research it was determined that the applied biomonitoring methods can be supplementary.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"50 1","pages":"163 - 172"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73010653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do We Still Need a Laboratory to Study Advanced Oxidation Processes? A Review of the Modelling of Radical Reactions used for Water Treatment","authors":"S. Wacławek","doi":"10.2478/eces-2021-0002","DOIUrl":"https://doi.org/10.2478/eces-2021-0002","url":null,"abstract":"Abstract Environmental pollution due to humankind’s often irresponsible actions has become a serious concern in the last few decades. Numerous contaminants are anthropogenically produced and are being transformed in ecological systems, which creates pollutants with unknown chemical properties and toxicity. Such chemical pathways are usually examined in the laboratory, where hours are often needed to perform proper kinetic experiments and analytical procedures. Due to increased computing power, it becomes easier to use quantum chemistry computation approaches (QCC) for predicting reaction pathways, kinetics, and regioselectivity. This review paper presents QCC for describing the oxidative degradation of contaminants by advanced oxidation processes (AOP, i.e., techniques utilizing •OH for degradation of pollutants). Regioselectivity was discussed based on the Acid Blue 129 compound. Moreover, the forecasting of the mechanism of hydroxyl radical reaction with organic pollutants and the techniques of prediction of degradation kinetics was discussed. The reactions of •OH in various aqueous systems (explicit and implicit solvation) with water matrix constituents were reviewed. For example, possible singlet oxygen formation routes in the AOP systems were proposed. Furthermore, quantum chemical computation was shown to be an excellent tool for solving the controversies present in the field of environmental chemistry, such as the Fenton reaction debate [main species were determined to be: •OH < pH = 2.2 < oxoiron(IV)]. An ongoing discussion on such processes concerning similar reactions, e.g., associated with sulphate radical-based advanced oxidation processes (SR-AOP), could, in the future, be enriched by similar means. It can be concluded that, with the rapid growth of computational power, QCC can replace most of the experimental investigations related to the pollutant’s remediation in the future; at the same time, experiments could be pushed aside for quality assessment only.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"43 1","pages":"11 - 28"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86931477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}