Earthquake Spectra最新文献

筛选
英文 中文
Performance-based earthquake early warning for tall buildings 基于性能的高层建筑地震预警
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-28 DOI: 10.1177/87552930241236762
Farid Ghahari, Khachik Sargsyan, Grace A Parker, Daniel Swensen, Mehmet Çelebi, Hamid Haddadi, Ertugrul Taciroglu
{"title":"Performance-based earthquake early warning for tall buildings","authors":"Farid Ghahari, Khachik Sargsyan, Grace A Parker, Daniel Swensen, Mehmet Çelebi, Hamid Haddadi, Ertugrul Taciroglu","doi":"10.1177/87552930241236762","DOIUrl":"https://doi.org/10.1177/87552930241236762","url":null,"abstract":"The ShakeAlert Earthquake Early Warning (EEW) system aims to issue an advance warning to residents on the West Coast of the United States seconds before the ground shaking arrives, if the expected ground shaking exceeds a certain threshold. However, residents in tall buildings may experience much greater motion due to the dynamic response of the buildings. Therefore, there is an ongoing effort to extend ShakeAlert to include the contribution of building response to provide a more accurate estimation of the expected shaking intensity for tall buildings. Currently, the supposedly ideal solution of analyzing detailed finite element models of buildings under predicted ground-motion time histories is not theoretically or practically feasible. The authors have recently investigated existing simple methods to estimate peak floor acceleration (PFA) and determined these simple formulas are not practically suitable. Instead, this article explores another approach by extending the Pacific Earthquake Engineering Research Center (PEER) performance-based earthquake engineering (PBEE) to EEW, considering that every component involved in building response prediction is uncertain in the EEW scenario. While this idea is not new and has been proposed by other researchers, it has two shortcomings: (1) the simple beam model used for response prediction is prone to modeling uncertainty, which has not been quantified, and (2) the ground motions used for probabilistic demand models are not suitable for EEW applications. In this article, we address these two issues by incorporating modeling errors into the parameters of the beam model and using a new set of ground motions, respectively. We demonstrate how this approach could practically work using data from a 52-story building in downtown Los Angeles. Using the criteria and thresholds employed by previous researchers, we show that if peak ground acceleration (PGA) is accurately estimated, this approach can predict the expected level of human comfort in tall buildings.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of input ground-motion selection techniques on site response analyses for different tectonic settings 输入地动选择技术对不同构造背景下场地响应分析的影响
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-27 DOI: 10.1177/87552930241230917
Ishika N Chowdhury, Ashly Cabas, James Kaklamanos, Albert Kottke, Nick Gregor
{"title":"Implications of input ground-motion selection techniques on site response analyses for different tectonic settings","authors":"Ishika N Chowdhury, Ashly Cabas, James Kaklamanos, Albert Kottke, Nick Gregor","doi":"10.1177/87552930241230917","DOIUrl":"https://doi.org/10.1177/87552930241230917","url":null,"abstract":"This study investigates how current practices of input ground-motion selection influence site response analysis results and their variability, when considering different tectonic settings. Study sites in Seattle and Boston are chosen to represent tectonic settings with contributions to the seismic hazard from shallow crustal and subduction events, as well as stable continental regions, respectively. Selected input ground-motion suites for one-dimensional site response analysis represent variations in the target spectrum definition, spectral period of interest, seismic source, and ground-motion database. When directly incorporating different types of seismic sources (e.g. shallow crustal versus subduction) into target spectrum definitions and selecting ground motions from the corresponding databases (i.e. consistent with such seismic sources), differences on the estimated site response and its variability are observed. These effects are captured by spectral amplification factors and nonspectral intensity measures (significant duration and Arias intensity) and become particularly apparent for subduction zones. The variability in spectral amplification factors stemming from ground-motion selection techniques is found to be also a function of the characteristics of the site, becoming higher near the fundamental period of the site. Estimated responses at stiffer sites are more significantly influenced by ground-motion selection techniques, whereas the onset of nonlinear soil behavior at softer sites can reduce such variability.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tsunami hazard evaluation of river embankment structures incorporating their vulnerability to seismic strong motion 河堤结构的海啸危害评估,包括其对地震强烈运动的脆弱性
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-26 DOI: 10.1177/87552930241237815
Kentaro Imai, Kentaro Nakai, Takashi Hirai, Toshihiro Noda, Nobuo Arai, Shunji Iwama, Hiroyuki Iwase, Toshitaka Baba
{"title":"Tsunami hazard evaluation of river embankment structures incorporating their vulnerability to seismic strong motion","authors":"Kentaro Imai, Kentaro Nakai, Takashi Hirai, Toshihiro Noda, Nobuo Arai, Shunji Iwama, Hiroyuki Iwase, Toshitaka Baba","doi":"10.1177/87552930241237815","DOIUrl":"https://doi.org/10.1177/87552930241237815","url":null,"abstract":"Development of coastal areas in Japan for various land uses since the 1960s has contributed to industrial upgrades and improved the efficiency of transportation networks. However, there are concerns about the vulnerability of developments on alluvial plains and reclaimed lands to geological events, like ground subsidence due to liquefaction during large earthquakes. Realistic assessment of earthquake and tsunami hazards and evaluation of possible countermeasures require accurate estimation of the amount of subsidence that can be expected from liquefaction at coastal and riverside sites supporting various structures. In this study, to evaluate the amount a river embankment structure might be expected to settle as a result of strong motion from an assumed Nankai Trough great earthquake, we conducted a numerical simulation using the soil–water coupled finite deformation analysis code GEOASIA. We then investigated the effect of the estimated embankment subsidence on tsunami inundation, which was simulated by using nonlinear shallow-water equations and a grid spacing as fine as 3.3 m. The influence of urban structures on the inundated area was taken into account by using a structure-embedded elevation model (SEM). The results showed that subsidence of river embankments and the collapse of parapet walls on top of them would increase both the depth and area of inundation caused by a tsunami triggered by a Nankai Trough scenario earthquake. Our findings underscore the importance of evaluating not only earthquake resistance but also vulnerability of coastal and riverside structures to strong motion in tsunami hazard analyses. Furthermore, the importance of tsunami inundation analysis using a SEM for predicting the behavior of tsunami flotsam in urban areas was demonstrated.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL – Administrative Duplicate Publication: Vs-0 Correction Factors for Input Ground Motions used in Seismic Site Response Analyses 撤回 - 行政性重复出版物:地震场地响应分析所用输入地面运动的 Vs-0 校正系数
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-25 DOI: 10.1177/87552930241232912
{"title":"WITHDRAWAL – Administrative Duplicate Publication: Vs-0 Correction Factors for Input Ground Motions used in Seismic Site Response Analyses","authors":"","doi":"10.1177/87552930241232912","DOIUrl":"https://doi.org/10.1177/87552930241232912","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL – Administrative Duplicate Publication: A Call to Refocus Research Goals for the Development of Seismic Optimization Methods 撤销 - 行政性重复出版:呼吁重新聚焦地震优化方法开发的研究目标
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-25 DOI: 10.1177/87552930241232932
{"title":"WITHDRAWAL – Administrative Duplicate Publication: A Call to Refocus Research Goals for the Development of Seismic Optimization Methods","authors":"","doi":"10.1177/87552930241232932","DOIUrl":"https://doi.org/10.1177/87552930241232932","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL – Administrative Duplicate Publication: Seismic Architecture: The Architecture of Earthquake Resistant Structures 撤销 - 行政复议出版物:地震建筑:抗震结构建筑学
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-25 DOI: 10.1177/87552930241232909
{"title":"WITHDRAWAL – Administrative Duplicate Publication: Seismic Architecture: The Architecture of Earthquake Resistant Structures","authors":"","doi":"10.1177/87552930241232909","DOIUrl":"https://doi.org/10.1177/87552930241232909","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL – Administrative Duplicate Publication: From Source to Building Fragility: Post-event Assessment of the 2013 M7.1 Bohol Philippines Earthquake 撤销 - 行政性重复出版:从源头到建筑脆弱性:2013 年菲律宾薄荷岛 M7.1 级地震的灾后评估
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-25 DOI: 10.1177/87552930241232910
{"title":"WITHDRAWAL – Administrative Duplicate Publication: From Source to Building Fragility: Post-event Assessment of the 2013 M7.1 Bohol Philippines Earthquake","authors":"","doi":"10.1177/87552930241232910","DOIUrl":"https://doi.org/10.1177/87552930241232910","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL – Administrative Duplicate Publication: Discussion of What is the Smallest Earthquake Magnitude that Needs to be Considered in Assessing Liquefaction Hazard? by Roger M.W. Musson 撤回 - 行政性重复出版:讨论在评估液化危害时需要考虑的最小地震震级是多少? 作者:Roger M.W. Musson
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-25 DOI: 10.1177/87552930241232913
{"title":"WITHDRAWAL – Administrative Duplicate Publication: Discussion of What is the Smallest Earthquake Magnitude that Needs to be Considered in Assessing Liquefaction Hazard? by Roger M.W. Musson","authors":"","doi":"10.1177/87552930241232913","DOIUrl":"https://doi.org/10.1177/87552930241232913","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of rupture directivity models for the US National Seismic Hazard Model 为美国国家地震灾害模型整合破裂指向性模型
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-23 DOI: 10.1177/87552930241232708
Kyle Withers, Morgan Moschetti, Peter Powers, Mark Petersen, Rob Graves, Brad T Aagaard, Annemarie Baltay, Nicolas Luco, Erin Wirth, Sanaz Rezaeian, Eric Thompson
{"title":"Integration of rupture directivity models for the US National Seismic Hazard Model","authors":"Kyle Withers, Morgan Moschetti, Peter Powers, Mark Petersen, Rob Graves, Brad T Aagaard, Annemarie Baltay, Nicolas Luco, Erin Wirth, Sanaz Rezaeian, Eric Thompson","doi":"10.1177/87552930241232708","DOIUrl":"https://doi.org/10.1177/87552930241232708","url":null,"abstract":"Several rupture directivity models (DMs) have been developed in recent years to describe the near-source spatial variations in ground-motion amplitudes related to propagation of rupture along the fault. We recently organized an effort toward incorporating these directivity effects into the US Geological Survey (USGS) National Seismic Hazard Model (NSHM), by first evaluating the community’s work and potential methods to implement directivity adjustments into probabilistic seismic hazard analysis (PSHA). Guided by this evaluation and comparison among the considered DMs, we selected an approach that can be readily implemented into the USGS hazard software, which provides an azimuthally varying adjustment to the median ground motion and its aleatory variability. This method allows assessment of the impact on hazard levels and provides a platform to test the DM amplification predictions using a generalized coordinate system, necessary for consistent calculation of source-to-site distance terms for complex ruptures. We give examples of the directivity-related impact on hazard, progressing from a simple, hypothetical rupture, to more complex fault systems, composed of multiple rupture segments and sources. The directivity adjustments were constrained to strike–slip faulting, where DMs have good agreement. We find that rupture directivity adjustments using a simple median and aleatory adjustment approach can affect hazard both from a site-specific perspective and on a regional scale, increasing ground motions off the end of the fault trace up to 30%–40% and potentially reducing it for sites along strike. Statewide hazard maps of California show that the change in shaking along major faults can be a factor to consider for assessing long-period [Formula: see text] near-source effects within the USGS NSHM going forward, reaching up to 10%–20%. Finally, we suggest consideration of minimum parameter ranges and baseline requirements as future DMs are developed to minimize single approach adaptations to enable more consistent application within both ground motion and hazard studies.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance-based probabilistic liquefaction-induced ground settlement procedure 基于性能的液化诱发地面沉降概率程序
IF 5 2区 工程技术
Earthquake Spectra Pub Date : 2024-03-19 DOI: 10.1177/87552930241234289
Franklin Olaya, Jonathan Bray, Norman Abrahamson
{"title":"Performance-based probabilistic liquefaction-induced ground settlement procedure","authors":"Franklin Olaya, Jonathan Bray, Norman Abrahamson","doi":"10.1177/87552930241234289","DOIUrl":"https://doi.org/10.1177/87552930241234289","url":null,"abstract":"Performance-based procedures represent an improvement over current state-of-practice procedures that treat the assessment of seismic demand and engineering response parameters independently. Procedures used in current practice generally provide estimates of liquefaction-induced ground settlement that are inconsistent with the desired ground settlement hazard level. A recently developed probabilistic procedure to estimate liquefaction-induced ground settlement is employed to develop a new performance-based procedure that estimates ground settlement which accounts for key sources of uncertainty. The ground-motion intensity and ground settlement estimations are integrated in the proposed procedure to produce hazard curves for liquefaction-induced ground settlement. The hazard curve for ground settlement links different hazard levels with their corresponding values of ground settlement by evaluating a wide range of ground-motion intensities and site characterization parameters with their associated uncertainties. The proposed performance-based procedure also permits the evaluation of different sources of uncertainty and their effects on the ground settlement estimate.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信