Day 3 Tue, November 30, 2021最新文献

筛选
英文 中文
Exploiting Slim Pulsed Neutron Spectroscopy for Unlocking Reservoir Potential in Brownfields: Two Examples from Gulf of Suez Offshore Field in Egypt 利用细脉冲中子能谱技术解锁棕地油藏潜力:以埃及苏伊士湾海上油田为例
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204751-ms
Mohamed Ameen, Eslam Atwa, Y. Youssif, Emad Abdel Hakim, M. Farouk, S. Ghadiry, K. Saleh, Aly Morad
{"title":"Exploiting Slim Pulsed Neutron Spectroscopy for Unlocking Reservoir Potential in Brownfields: Two Examples from Gulf of Suez Offshore Field in Egypt","authors":"Mohamed Ameen, Eslam Atwa, Y. Youssif, Emad Abdel Hakim, M. Farouk, S. Ghadiry, K. Saleh, Aly Morad","doi":"10.2118/204751-ms","DOIUrl":"https://doi.org/10.2118/204751-ms","url":null,"abstract":"\u0000 For more than 40 years, pulsed neutron spectroscopy has been primarily used in reservoir management to determine hydrocarbon saturation profiles, tracking reservoir depletion, and planning workover activities to diagnose production problems such as water influx. Legacy pulsed neutron tools used to provide this information for more than four decades, but they were challenged when a mixed lithology reservoir is encountered, complex completions, unknown borehole conditions, and poor cement integrity in cased boreholes.\u0000 This paper presents two successful field examples and applications using the advanced slim pulsed neutron spectroscopy to precisely determine multiphase contacts in a complex geological structure, provide current hydrocarbon saturation independent of the quality of cement behind the casing, and identifying bypassed hydrocarbon. This was of paramount importance in understanding current reservoir fluid distribution to reveal the true potential of this offshore brownfield located in the Gulf of Suez, Egypt.\u0000 An integrated approach and candidate well selection were done that resulted in selecting two candidate wells that had poor cement quality behind casing, heterogeneous carbonate reservoir with mixed lithology, and uncertain fluid contacts in a complex reservoir structure. These combined borehole and reservoir conditions resemble challenges for capturing this crucial information with high confidence using the legacy pulsed neutron tool, and therefore required an advanced technology that can overcome these challenges using a single logging mode at twice the logging speed of any current pulsed neutron technology available in the industry.\u0000 Based on the results, a workover campaign was implemented in this mature field to increase overall oil production with very efficient cost control, especially with this unprecedented time the O&G industry is going through. An integrated approach was set that resulted in the selection of two wells for the saturation determination logging tool deployment.\u0000 Detailed high-resolution mineralogy, self-compensated total porosity and sigma, fluid type identification, and multiphase fluid saturation was obtained with high precision behind cased borehole independent of cement integrity and borehole fluid reinvasion. The results provided crucial information as an input to the integrated reservoir engineering approach which revealed around a 100-m net oil interval which was previously overlooked due to relatively low resistivity. Besides, fluids contacts were evaluated that confirmed the development of a secondary gas cap and the water encroachment direction. This technology can be further applied to more brownfields provided the right candidate selection is done to understand the potentiality of the field which would increase the recovery factor of the brownfields that represent almost more than 65% of the oil and gas fields around the world.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88772421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Measurement of Tortuosity of Porous Media Using Imaging, Electrical Measurements, and Pulsed Field Gradient NMR 利用成像、电测量和脉冲场梯度核磁共振测量多孔介质的扭曲度
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204629-ms
M. Elsayed, H. Kwak, A. El-Husseiny, Mohamed Mahmoud
{"title":"The Measurement of Tortuosity of Porous Media Using Imaging, Electrical Measurements, and Pulsed Field Gradient NMR","authors":"M. Elsayed, H. Kwak, A. El-Husseiny, Mohamed Mahmoud","doi":"10.2118/204629-ms","DOIUrl":"https://doi.org/10.2118/204629-ms","url":null,"abstract":"\u0000 Tortuosity, in general characterizes the geometric complexity of porous media. It is considered as one of the key factors in characterizing the heterogonous structure of porous media and has significant implications for macroscopic transport flow properties. There are four widely used definitions of tortuosity, that are relevant to different fields from hydrology to chemical and petroleum engineering, which are: geometric, hydraulic, electrical, and diffusional. Recent work showed that hydraulic, electrical and diffusional tortuosity values are roughly equal to each other in glass beads. Nevertheless, the relationship between the different definitions of Tortuosity in natural rocks is not well understood yet. Understanding the relationship between the different Tortuosity definitions in rocks can help to establish a workflow that allows us to estimate other types from the available technique. Therefore, the objective of this study is to investigate the relationship between the different tortuosity definitions in natural rocks. A major focus of this work is to utilize Nuclear Magnetic Resonance (NMR) technology to estimate Tortuosity. Such technique has been traditionally used to obtain diffusional tortuosity which can be defined as the ratio of the free fluid self-diffusion coefficient to the restricted fluid self-diffusion coefficient inside the porous media.\u0000 In this study, the following techniques were used to quantify hydraulic, electrical, and diffusional tortuosity respectively on the same rock sample: (1) Microcomputed Tomography 3D imaging (2) Four-Electrodes resistivity measurements (3) Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG NMR). PFG NMR is very powerful, non-invasive technique employed to measure the self-diffusion coefficient for free and confined fluids. The measurements were done based on two carbonate rock core plugs characterized by variable porosity, permeability and texture complexity.\u0000 Results show that PFG NMR can be applied directionally to quantify the pore network anisotropy created by fractures. For both samples, hydraulic tortuosity was found to have the lowest magnitude compared to geometric, electrical and diffusional tortuosity. This could be explained by the more heterogeneous microstructure of carbonate rocks. NMR technique has however advantages over the other electrical and imaging techniques for tortuosity characterization: it is faster, non-destructive and can be applied in well bore environment (in situ). We therefore conclude that NMR can provide a tool for estimating not only diffusional tortuosity but also for indirectly obtaining hydraulic and electrical tortuosity.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89140373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Horizontal Well Correlation Method for Dynamic Update of Subsurface Layers While Geosteering 地质导向时地下层动态更新的先进水平井相关方法
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204721-ms
Abdul Mohsen Al-Maskeen, Sadaqat S. Ali
{"title":"Advanced Horizontal Well Correlation Method for Dynamic Update of Subsurface Layers While Geosteering","authors":"Abdul Mohsen Al-Maskeen, Sadaqat S. Ali","doi":"10.2118/204721-ms","DOIUrl":"https://doi.org/10.2118/204721-ms","url":null,"abstract":"\u0000 A new automated approach to well correlation is presented that utilizes real-time Logging While-Drilling (LWD) data and predicted well curve to dynamically update subsurface layers during geosteering operations. The automatically created predicted log and a dynamically updated structural framework provides the foundation of the process. The predicted log is created using vertical sections of the nearby wells, which provide high confidence for determining depth and stratigraphic position of the geosteered well. The results give a better understanding of thickness variation in the horizontal part of the reservoir and maximize the reservoir contact (Sung, 2008).\u0000 A new advanced methodology introduced in this study involves the creation of a dynamic structural framework model, from which horizontal well correlation is performed using real-time well logs and predicted logs that are generated from adjacent wells. The predicted logs are correlated to the LWD logs using anchor points and an interactive stretching and squeezing process that honors true stratigraphic thickness. Each new anchor point results in the creation of an additional control point that is used to build a more precise structural framework model.\u0000 This new approach enables more rapid well log interpretation, increased accuracy and the ability to dynamically update the subsurface model during drilling. It also enables more efficient steering of the wellbore into the most productive zones of the reservoir. This study demonstrates how wells with over 10,000 feet of horizontal reservoir contact can be correlated in a real-time geosteering environment in a dynamic, efficient and accurate manner. The proposed process dramatically helps reduce the cost of drilling and the time it takes to dynamically regenerate accurate updated maps of the subsurface. It represents a major improvement in the understanding and modeling of complex, heterogeneous reservoirs by fostering a multi-disciplinary environment of cross-domain experts that are able to collaborate seamlessly as asset-teams. Both accuracy and efficiency gains have been realized by incorporating this methodology in the characterization of multi-stacked reservoirs.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89284990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconventional Engineering Toward Efficient Geosteering and Well Placement - Logging-While-Drilling in an Oil-Based Mud Environment 在油基泥浆环境中实现高效地质导向和井眼定位的非常规工程
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204870-ms
Salaheldeen S Almasmoom, G. Santoso, Naif M Rubaie, Javier O Lagraba, David B Stonestreet, O. Faraj, A. Belowi, J. Alomoush
{"title":"Unconventional Engineering Toward Efficient Geosteering and Well Placement - Logging-While-Drilling in an Oil-Based Mud Environment","authors":"Salaheldeen S Almasmoom, G. Santoso, Naif M Rubaie, Javier O Lagraba, David B Stonestreet, O. Faraj, A. Belowi, J. Alomoush","doi":"10.2118/204870-ms","DOIUrl":"https://doi.org/10.2118/204870-ms","url":null,"abstract":"\u0000 This paper presents a success story of deploying new technology to improve geosteering operations in an unconventional horizontal well. A new-generation logging-while-drilling (LWD) imaging tool, that provides high resolution resistivity and ultrasonic images in an oil-based mud environment, was tested while drilling a long lateral section of an unconventional horizontal well. In addition to improving the geosteering operations, this tool has proven the ability to eliminate the wireline image log requirements (resistivity and ultrasonic), hence reducing rig time significantly. The LWD bottomhole-assembly (BHA) included the following components: gamma ray (GR), density, neutron, resistivity, sonic, density imager, and the newly deployed dual imager (resistivity and ultrasonic). The dual imager component adds an additional 15-ft sub to the drilling BHA, which includes four ultrasonic sensors orthogonal to each other, and two electromagnetic sensors diametrically opposite to each other (reference figure 1).\u0000 This new technology was deployed in an unconventional horizontal well to help geosteer the well in the intended zone, which led to an improvement in well placement, enhanced the evaluation of the lateral facies distribution, and allowed better identification of natural fractures. The dual images provided the necessary information for interpreting geological features, drilling induced features, and other sedimentological features, thus enhancing the multistage hydraulic fracturing stimulation design. In addition, an ultrasonic caliper was acquired while drilling the curve and lateral section, providing a full-coverage image of the borehole walls and cross-sectional borehole size.\u0000 The unique BHA was designed to fulfill all the directional drilling, formation evaluation and geosteering requirements. A dynamic simulation was done to confirm the required number of stabilizers, and their respective locations within the BHA, to reduce shock and vibration, borehole tortuosity and drilling related issues, thereby improving over-all performance. Real-time drilling monitoring included torque and drag trending, back-reaming practices and buckling avoidance calculations, which were implemented to support geosteering, and for providing a smooth wellbore for subsequent wireline and completion operations run in this well.\u0000 A new generation dual-image oil-based mud environment LWD tool was successfully deployed to show the multifaceted benefits of enhanced geo-steering/well placement, formation evaluation, and hydraulic fracturing design in an unconventional horizontal well. Complexities in the multifunctioning nature of the BHA were strategically optimized to support all requirements without introducing any significant risk in operation.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78757887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of Wellbore Strengthening Techniques in Carbonate Formation Solves Lost Circulation Challenges During Liner Running and Cementing 碳酸盐地层井眼强化技术的应用解决了尾管下入和固井过程中的漏失问题
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204594-ms
Muneer Al Noumani, Younis Al Masoudi, M.M. Al Mamari, Yaqdhan Khalfan Al Rawahi, Mohammed Al Yaarubi, Safa Al Nabhani, I. Cameron, David Knox, Roberto Peralta, Emmanuel Thérond
{"title":"Application of Wellbore Strengthening Techniques in Carbonate Formation Solves Lost Circulation Challenges During Liner Running and Cementing","authors":"Muneer Al Noumani, Younis Al Masoudi, M.M. Al Mamari, Yaqdhan Khalfan Al Rawahi, Mohammed Al Yaarubi, Safa Al Nabhani, I. Cameron, David Knox, Roberto Peralta, Emmanuel Thérond","doi":"10.2118/204594-ms","DOIUrl":"https://doi.org/10.2118/204594-ms","url":null,"abstract":"\u0000 For many years, the oil and gas industry has deployed techniques which enhance formation strength via the successful propping and plugging of induced fractures. Induced fracture sizes have been successfully treated using this method up to the 600 – 1,100-micron range. Static wellbore strengthening techniques are commonly deployed to cover 1,000 micron and all fracture size risks underneath.\u0000 The deployment of wellbore strengthening techniques has historically been confined to permeable formations. In most cases, wellbore strengthening has been deployed to operationally challenging sand fracture gradients or, where boundaries are pushed, lower ranges of permeability, such as silts. The subject of wellbore strengthening in shales or carbonates to this day, remains a challenge for the industry, with very few documented success stories or evidence of sustained ability to enhance fracture gradient across a drilling campaign.\u0000 This paper covers the history of lost circulation events which have been reported in the Khazzan/Ghazeer field in the carbonate Habshan formation. It also describes the design changes which were introduced to strengthen the rock and enable circulation/returns, during liner cementation. The design work built on experience applying wellbore strengthening techniques in carbonates in the Norwegian sector of the North Sea. This work is also summarized in this paper.\u0000 The Habshan carbonate formation in Oman presents a lost circulation challenge through an ‘induced’ fracture risk. Since the beginning of the drilling campaign in the Khazzan/Ghazeer field, the Habshan formation has repeatedly experienced induced mud losses during well activities such as liner running, mud conditioning with liner on bottom and cementing, when the formation is exposed to higher pressures, less so during drilling. The Habshan challenge in Oman has led to regular, significant lost circulation events during cement placement, adding operational cost and more importantly, presenting difficulties around meeting zonal isolation objectives.\u0000 Through previous field experience in Norway, a set of criteria was developed to qualify a standard pill approach to carbonate strengthening. The currently deployed strategy is designed to address both the risk of induced fracture by propping and plugging (wellbore strengthening) and provide some ability to seal natural fractures which are often encountered with carbonates, or similarly flawed rocks. The strategy deployed aims to cover these two risks with a blanket approach to lost circulation risk in carbonates.\u0000 The success of this approach is demonstrated using well performance data from a total of 43 wells drilled before and after the introduction of the wellbore strengthening strategy.\u0000 As it was initially assumed that wellbore strengthening could not be applied to carbonate formations, other techniques had been tried to prevent lost circulation. Those techniques provided mixed results.\u0000 Since the implementation of wellb","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"237 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78533750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance Computing on the Cloud Successfully Deployed for 3D Geosteering and Reservoir Mapping While Drilling 云上的高性能计算成功应用于三维地质导向和随钻储层测绘
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204828-ms
D. Salim, M. Thiel, Beate Nesttun Øyen, Kong Bakti Tan, J. Denichou, Vera Krissetiawati Wibowo, Desheng Zhang, K. Harms, M. Etchebes, F. Antonsen, Maria Emilia De Oliveira
{"title":"High Performance Computing on the Cloud Successfully Deployed for 3D Geosteering and Reservoir Mapping While Drilling","authors":"D. Salim, M. Thiel, Beate Nesttun Øyen, Kong Bakti Tan, J. Denichou, Vera Krissetiawati Wibowo, Desheng Zhang, K. Harms, M. Etchebes, F. Antonsen, Maria Emilia De Oliveira","doi":"10.2118/204828-ms","DOIUrl":"https://doi.org/10.2118/204828-ms","url":null,"abstract":"\u0000 The successful drilling of horizontal wells targeting reservoir zones of interest can be challenged by uncertainties in geological interpretation, identification of structure, and properties of reservoirs and fluid distribution. Optimizing the well placement of high-angle wells in order to intercept the sweet spots is crucial for the total hydrocarbon recovery in any development field. Thus, the geosteering domain was implemented to provide in real time a reservoir mapping characterization together with directional control to achieve the key performance objectives. In the past, many innovative technologies have been introduced in geosteering discipline, among them lately the deep EM directional resistivity tool that provides 1D formation resistivity mapping while drilling.\u0000 However, despite the fact of delivering a multilayer mapping of the reservoir structure up to tens of meters away from wellbore, the real-time interpretation can be limited by this type of inversion. Since it is a 1D approach, these inversions map resistive boundaries on the vertical axis and assume infinite extend in all other directions. Consequently, in a complex geological setting, 1D approximation may fall short of properly describing the reservoir structure.\u0000 This communication describes how the introduction of the 2D azimuthal resistivity inversions while drilling was conducted and details the various innovations required in the domains of downhole logging while drilling (LWD) measurements transmission in addition to adaptation of inversion methodology for real-time deployment, mainly through the use of high-performance cloud computing. The final enablement was the execution of automated workflows to process and deliver these advanced inversions into an integrated 3D geomodelling software within the turnaround time of drilling operations.\u0000 This novel technology provides, while drilling, a better understanding of the 3D geological environment and fluid distribution with a deep depth of investigation, as well as the required information to make support for geosteering decisions for optimal well positioning. Initial field deployments were successfully conducted in horizontal wells, and three examples are presented here. Those real cases, executed with wire-drilled-pipe or mud-pulse telemetries, demonstrated the benefits of integrating 2D azimuthal inversions into the current geosteering workflow to provide a complete 3D structural understanding of the reservoir while drilling. This communication documents in detail how such an approach led to operational efficiency improvements in the form of 3D reservoir mapping in real-time, supporting a strategic change in the original well to turn toward the sweet spot, which was located sideways from the planned trajectory.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86773176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Pressure Flexible Pipe for Fracturing Fluid Delivery 压裂液输送用高压柔性管
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204530-ms
Enrique Villarroel, G. Chochua, Alex Garro, A. Gnanavelu
{"title":"High-Pressure Flexible Pipe for Fracturing Fluid Delivery","authors":"Enrique Villarroel, G. Chochua, Alex Garro, A. Gnanavelu","doi":"10.2118/204530-ms","DOIUrl":"https://doi.org/10.2118/204530-ms","url":null,"abstract":"\u0000 Hydraulic fracturing is a well stimulation treatment that has been around since the 1940s, becoming more popular in recent years because of the unconventional hydraulic fracturing boom in North America.\u0000 Between the 1990s and 2000s, the oil and gas industry found an effective way to extract hydrocarbons from formations that were previously uneconomical to produce. Consolidated unconventional formations such as shale and other tight rocks can now be artificially fractured to induce connectivity among the pores containing hydrocarbons, enabling them to easily flow into the wellbore for recovery at the surface.\u0000 The method of fracturing unconventional reservoirs requires a large amount of surface equipment, continuously working to stimulate the multiple stages perforated along the horizontal section of the shale formation. The operations normally happen on a single or multi-wells pad with several sets of perforations fractured by using the zipper-fracturing methodology (Sierra & Mayerhofer, 2014). Compared with conventional hydraulic fracturing, the surface equipment must perform for extended pump time periods with only short stops for maintenance and replacement of damaged components.\u0000 This paper addresses improvements made to the fracturing fluid delivery systems as an alternative to the fracturing iron traditionally used in fracture stimulation services. The improvement aims to enhance equipment reliability and simplify surface setup while reducing surface friction pressure during the hydraulic fracturing treatment.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84145009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Borehole Seismic: Essential Contributions Over the Oilfield Lifecycle 井眼地震:对油田生命周期的重要贡献
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204889-ms
Rajeev Kumar, P. Bettinelli
{"title":"Borehole Seismic: Essential Contributions Over the Oilfield Lifecycle","authors":"Rajeev Kumar, P. Bettinelli","doi":"10.2118/204889-ms","DOIUrl":"https://doi.org/10.2118/204889-ms","url":null,"abstract":"\u0000 During the evolution of the petroleum industry, surface seismic imaging has played a critical role in reservoir characterization. In the early days, borehole seismic (BHS) was developed to complement surface seismic. However, in the last few decades, a wide range of BHS surveys has been introduced to cater to new and unique objectives over the oilfield lifecycle.\u0000 In the exploration phase, vertical seismic profiling (VSP) provides critical time-depth information to bridge time indexed subsurface images to log/reservoir properties in depth. This information can be obtained using several methods like conventional wireline checkshot or zero-offset vertical seismic profiling (ZVSP), seismic while drilling (SWD) or distributed acoustic sensing (DAS) techniques. SWD is a relatively new technique to record real-time data using tool deployed in the bottomhole assembly without disturbing the drilling. It helps to improve decision making for safer drilling especially in new areas in a cost-effective manner. Recently, a breakthrough technology, distributed acoustic sensing (DAS), has been introduced, where data are recorded using a fiber-optic cable with lots of saving. ZVSP also provides several parameters like, attenuation coefficient (Q), multiples prediction, impedance, reflectivity etc., which helps with characterizing the subsurface and seismic reprocessing.\u0000 In the appraisal phase, BHS applications vary from velocity model update, anisotropy estimation, well- tie to imaging VSPs. The three-component VSP data is best suited for imaging and amplitude variation with offset (AVO) due to several factors like less noise interference due to quiet downhole environment, higher frequency bandwidth, proximity to the reflector, etc. Different type of VSP surveys (offset, walkaway, walkaround etc.) were designed to fulfill objectives like imaging, AVO, Q, anisotropy, and fracture mapping.\u0000 In the development phase, high-resolution images (3D VSP, walkaway, or crosswell) from BHS surveys can assist with optimizing the drilling of new wells and, hence reduce costs. it can help with landing point selection, horizontal section placement, and refining interpretation for reserve calculation.\u0000 BHS offers a wide range of surveys to assist the oilfield lifecycle during the production phase. Microseismic monitoring is an industry-known service to optimize hydraulic fracturing and is the only technique that captures the induced seismicity generated by hydraulic fracturing and estimate the fracture geometry (height, width, and azimuth) and in real time. During enhanced oil recovery (EOR) projects, BHS can be useful to optimize the hydrocarbon drainage strategies by mapping the fluid movement (CO2, water, steam) using time-lapse surveys like walkaway, 3D VSP and/or crosswell. DAS has brought a new dimension to provide vital information on injection or production evaluation, leak detection, flow behind tubing, crossflow diagnosis, and cement evaluation during production phas","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87552063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Predictor for Polymer Viscosity to Enhance Support for EOR Processes 聚合物粘度智能预测器提高EOR工艺支持
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204839-ms
Mohammad Rasheed Khan, S. Kalam, Abdul Asad, Rizwan Ahmed Khan, M. Kamal
{"title":"Intelligent Predictor for Polymer Viscosity to Enhance Support for EOR Processes","authors":"Mohammad Rasheed Khan, S. Kalam, Abdul Asad, Rizwan Ahmed Khan, M. Kamal","doi":"10.2118/204839-ms","DOIUrl":"https://doi.org/10.2118/204839-ms","url":null,"abstract":"\u0000 Research into the use of polymers for enhanced oil recovery (EOR) processes has been going on for more than 6 decades and is now classified as a techno-commercially viable option. A comprehensive evaluation of the polymer's rheology is pivotal to the success of any polymer EOR process. Laboratory-based evaluation is critical to EOR success; however, it is also a time/capital consuming process. Consequently, any tool which can aid in optimizing lab tests design can bring in great value. Accordingly, in this study a novel predictive correlation for viscosity estimation of commonly used \"FP 3330S\" EOR polymer is presented through use of cutting-edge machine learning neural networks.\u0000 Mathematical equation for polymer viscosity is developed using machine learning algorithms as a function of polymer concentration, NaCl concentration, and Ca2+ concentration. The measured input data was collected from the literature and sub-divided into training and test sets. A wide-ranging optimization was performed to select the best parameters for the neural network which includes the number of neurons, neuron layers, activation functions between multiple layers, weights, and bias. Furthermore, the Levenberg-Marquardt back-propagation algorithm was utilized to train the model. Finally, measured and estimated viscosities were compared based on error-analysis.\u0000 Novel correlation is developed for the polymer that can be used in predictive mode. This established correlation can predict polymer viscosity when applied to the test dataset and outperforms other published models with average error in the range of 3-5% and coefficient of determination in excess of 0.95. Moreover, it is shown that neural networks are faster and relatively better than other machine learning algorithms explored in this study. The proposed correlation can map non-linear relationships between polymer viscosity and other rheological parameters such as molecular weight, polymer concentration, and cation concentration of polymer solution. Lastly, through machine learning validation approach, it was possible to examine feasibility of the proposed models which is not done by traditional empirical equations.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85755596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Talent Acquisition Process Optimization Using Machine Learning in Resumes’ Ranking and Matching to Job Descriptions 在简历排序和职位描述匹配中使用机器学习优化人才获取流程
Day 3 Tue, November 30, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204534-ms
Mohammed Alghazal
{"title":"Talent Acquisition Process Optimization Using Machine Learning in Resumes’ Ranking and Matching to Job Descriptions","authors":"Mohammed Alghazal","doi":"10.2118/204534-ms","DOIUrl":"https://doi.org/10.2118/204534-ms","url":null,"abstract":"\u0000 Employers commonly use time-consuming screening tools or online matching engines that are driven by manual roles and predefined keywords, to search for potential job applicants. Such traditional techniques have not kept pace with the new digital revolution in machine learning and big data analytics. This paper presents advanced artificial intelligent solutions employed for ranking resumes and CV-to-Job Description matching.\u0000 Open source resumes and job descriptions' documents were used to construct and validate the machine learning models in this paper. Documents were converted to images and processed via Google cloud using Optical Character Recognition algorithm (OCR) to extract text information from all resumes and job descriptions' documents, with more than 97% accuracy. Prior to modeling, the extracted text were processed via a series of Natural Language Processing (NLP) techniques by splitting/tokenizing common words, grouping together inflected form of words, i.e. lemmatization, and removal of stop words and punctuation marks.\u0000 After text processing, resumes were trained using the unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), for topic modeling and categorization. Given the type of resumes used, the algorithm was able to categorize them into 4 main job sectors: marketing and business, engineering, computer science/IT and health. Scores were assigned to each resume to represent the maximum LDA probability for ranking. Another more advanced deep learning algorithm, called Doc2Vec, was also used to train and match potential resumes to relevant job descriptions. In this model, resumes are represented by unique vectors that can be used to group similar documents, match and retrieve resumes related to a given job description document provided by HR. The similarity is measured between each resume and the given job description file to query the top job candidates. The model was tested against several job description files related to engineering, IT and human resources, and was able to identify the top-ranking resumes from over hundreds of trained resumes.\u0000 This paper presents an innovative method for processing, categorizing and ranking resumes using advanced computational models empowered by the latest fourth industrial resolution technologies. This solution is beneficial to both job seekers and employers, providing efficient and unbiased data-driven method for finding top applicants for a given job.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82600456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信