Current opinion in investigational drugs最新文献

筛选
英文 中文
NLX-P101, an adeno-associated virus gene therapy encoding glutamic acid decarboxylase, for the potential treatment of Parkinson's disease. NLX-P101,一种编码谷氨酸脱羧酶的腺相关病毒基因疗法,用于帕金森病的潜在治疗。
Javier Diaz-Nido
{"title":"NLX-P101, an adeno-associated virus gene therapy encoding glutamic acid decarboxylase, for the potential treatment of Parkinson's disease.","authors":"Javier Diaz-Nido","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease affecting nigrostriatal dopaminergic neurons. Dopamine depletion in the striatum leads to functional changes in several deep brain nuclei, including the subthalamic nucleus (STN), which becomes disinhibited and perturbs the control of body movement. Although there is no cure for PD, some pharmacological and surgical treatments can significantly improve the functional ability of patients, particularly in the early stages of the disease. Among neurodegenerative diseases, PD is a particularly suitable target for gene therapy because the neuropathology is largely confined to a relatively small region of the brain. Neurologix Inc is developing NLX-P101 (AAV2-GAD), an adeno-associated viral vector encoding glutamic acid decarboxylase (GAD), for the potential therapy of PD. As GAD potentiates inhibitory neurotransmission from the STN, sustained expression of GAD in the STN by direct delivery of NLX-P101 decreases STN overactivation. This procedure was demonstrated to be a safe and efficient method of reducing motor deficits in animal models of PD. A phase I clinical trial has demonstrated that NLX-P101 was safe and indicated the efficacy of this approach in patients with PD. Results from an ongoing phase II clinical trial of NLX-P101 are awaited to establish the clinical efficacy of this gene therapy.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 7","pages":"813-22"},"PeriodicalIF":0.0,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29075228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive effects of muscarinic M1 functional agonists in non-human primates and clinical trials. 毒蕈碱M1功能激动剂在非人灵长类动物中的认知作用及临床试验。
Robert A McArthur, Julian Gray, Rudy Schreiber
{"title":"Cognitive effects of muscarinic M1 functional agonists in non-human primates and clinical trials.","authors":"Robert A McArthur,&nbsp;Julian Gray,&nbsp;Rudy Schreiber","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The limited effect of AChE inhibitors and NMDA receptor antagonists for the treatment of the cognitive symptoms of Alzheimer's disease has prompted the search for new drugs that are capable not only of treating behavioral symptoms, but also of modifying the disease process. Considerable research efforts have been focused on orthosteric muscarinic M1 functional agonists during the past decade to address both these strategies. Part of this research has included the use of non-human primates as models of cognitive impairment to demonstrate preclinical efficacy. No M1 functional agonist has been successfully registered for the treatment of Alzheimer's disease, mostly because of mechanism-related adverse side effects and marginal cognitive effects. However, the M1 agonist xanomeline exhibited preclinical and clinical efficacy for the treatment of the negative and cognitive symptoms of schizophrenia. These results prompted renewed interest in repositioning compounds such as sabcomeline (Proximagen Group plc) for this indication, as well as developing allosteric muscarinic M1 ligands to improve efficacy while reducing side-effect-related attrition. This review discusses preclinical and clinical data from orthosteric M1 functional agonists, focusing on target validation in primate cognition studies, and provides recommendations for testing a new generation of M1 ligands and compounds with novel mechanisms of action.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 7","pages":"740-60"},"PeriodicalIF":0.0,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29077401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers. Vismodegib,一种用于治疗晚期癌症的小分子hedgehog通路抑制剂。
Enrico De Smaele, Elisabetta Ferretti, Alberto Gulino
{"title":"Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers.","authors":"Enrico De Smaele,&nbsp;Elisabetta Ferretti,&nbsp;Alberto Gulino","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Vismodegib (GDC-0449) is a small, orally administrable molecule, belonging to the 2-arylpyridine class, which was discovered by Genentech Inc under a collaboration with Curis Inc. Vismodegib inhibits the Hedgehog (Hh) pathway, which is involved in tumorigenesis, thus providing a strong rationale for its use in the treatment of a variety of cancers. Vismodegib suppresses Hh signaling by binding to and interfering with smoothened, a membrane protein that provides positive signals to the Hh signaling pathway. Preclinical studies demonstrated the antitumor activity of vismodegib in mouse models of medulloblastoma (MB) and in xenograft models of colorectal and pancreatic cancer. Phase I clinical trials in patients with advanced basal cell carcinoma (BCC) and MB highlighted an objective response to vismodegib. Reported side effects were minor, with only one grade 4 adverse event. Vismodegib is currently undergoing phase II clinical trials for the treatment of advanced BCC, metastatic colorectal cancer, ovarian cancer, MB and other solid tumors. Because of its low toxicity and specificity for the Hh pathway, this drug has potential advantages compared with conventional chemotherapy, and may also be used in combination treatments. Clinical trials with other Hh inhibitors are also ongoing and their therapeutic potential will need to be compared with vismodegib.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"707-18"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29011122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PI3K pathway-directed therapeutic strategies in cancer. PI3K通路导向的癌症治疗策略。
Roshan Agarwal, Mark Carey, Bryan Hennessy, Gordon B Mills
{"title":"PI3K pathway-directed therapeutic strategies in cancer.","authors":"Roshan Agarwal,&nbsp;Mark Carey,&nbsp;Bryan Hennessy,&nbsp;Gordon B Mills","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>PI3K pathway signaling is the focus of intensive oncology drug-development programs at several academic institutions and pharmaceutical companies. With several drugs that target different parts of the pathway in early clinical trials, this review presents evidence demonstrating that the PI3K pathway represents a suitable target for cancer drug development, discusses therapeuticstrategies for targeting the pathway, and highlights the status of drugs currently in development.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 6","pages":"615-28"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10584231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity issues in cancer drug development. 癌症药物开发中的毒性问题。
David A Gewirtz, Molly L Bristol, Jack C Yalowich
{"title":"Toxicity issues in cancer drug development.","authors":"David A Gewirtz,&nbsp;Molly L Bristol,&nbsp;Jack C Yalowich","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cancer chemotherapy has evolved from the use of cytotoxic drugs that are accompanied by highly deleterious and often life-threatening side effects, to the application of hormone antagonists that are more specific for hormone-mediated tumor growth and that are generally substantially less toxic and, most recently, to the use of targeted therapies including humanized mAbs and drugs such as imatinib (Gleevec) that have been developed for the treatment of malignancies induced by a unique chromosomal rearrangement. While these newer agents should theoretically prove to be more efficacious than the conventional drugs that have been the foundation of cancer treatment for decades, such improvement has not always been demonstrated either with the use of single agents or when these agents are combined with established therapies. Furthermore, neither cell culture nor animal model systems have provided reliable predictions of drug efficacy or toxicity. Consequently, despite advancing knowledge relating to signaling pathways and potential druggable targets involved in cancer, the use of newer agents will ultimately be dependent on empirical clinical trials, many of which will likely fail to demonstrate efficacy because of pharmacokinetic limitations or undesirable and limiting patient toxicities.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"612-4"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29009721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of therapeutic agents for older patients with acute myelogenous leukemia. 老年急性髓性白血病治疗剂的研制。
Christopher S Hourigan, Judith E Karp
{"title":"Development of therapeutic agents for older patients with acute myelogenous leukemia.","authors":"Christopher S Hourigan,&nbsp;Judith E Karp","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Acute myelogenous leukemia (AML) is a disease more common in older patients than in the young. It is increasingly recognized that conventional cytotoxic chemotherapies used in children and young adults may not be appropriate in older adults because of diverse host- and disease-biology factors. This review highlights some of the most promising new treatment options that are being evaluated for older patients with AML. These options include CPX-351 (Celator Pharmaceuticals Inc), a unique liposomal formulation of a fixed ratio of cytarabine and daunorubicin; timed sequential therapy with the CDK inhibitor alvocidib (flavopiridol; sanofi-aventis/NCI); the second-generation purine nucleoside analog clofarabine; the farnesyltransferase inhibitor tipifarnib (Johnson & Johnson Pharmaceutical Research and Development LLC); and the DNA methyltransferase inhibitors decitabine and azacitidine.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"669-77"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699173/pdf/nihms744846.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29009653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. PLX-4032,一种小分子B-Raf抑制剂,有望治疗恶性黑色素瘤。
Keiran S M Smalley
{"title":"PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma.","authors":"Keiran S M Smalley","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>PLX-4032 is a small-molecule, orally available B-Raf kinase inhibitor being developed by Plexxikon Inc and Hoffman-La Roche Ltd for the treatment of cancers harboring activating BRAF mutations. The primary focus of development is in melanoma (> 50% harbor activating BRAF mutations) with other solid tumors, such as colorectal carcinoma (> 10% harbor BRAF mutations), also under investigation. Purified kinase assays have demonstrated that PLX-4032 and its related analogs are highly potent inhibitors of B-Raf activity, with 3-fold selectivity for the V600E mutation over the wild-type kinase. In preclinical models, PLX-4032 and its analogs inhibited the growth of BRAFV600E-positive melanoma cell lines both in vitro and in vivo. In phase I clinical trials, PLX-4032 was well tolerated and objective responses were observed in several patients with BRAFV600E-positive tumors. Responses correlated well with inhibition of intratumoral phospho-ERK and cell proliferation, and reductions in fluorodeoxyglucose uptake on PET scanning. A preliminary analysis of this phase I data suggested that progression-free survival was approximately 7 months, and phase II and III clinical trials are now underway. These studies provide the proof-of-concept for B-Raf as a therapeutic target in melanoma.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"699-706"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29011121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autotaxin and lipid signaling pathways as anticancer targets. Autotaxin和脂质信号通路作为抗癌靶点。
Demetrios T Braddock
{"title":"Autotaxin and lipid signaling pathways as anticancer targets.","authors":"Demetrios T Braddock","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Tumor progression and metastasis depend on signals in the tumor microenvironment acting on both the malignant cells and benign stroma to create an environment favorable to tumor expansion. A factor of emerging importance that acts in the tumor microenvironment is lysophosphatidic acid (LPA), a small signaling molecule that not only induces the transformation of benign cells into malignant invasive tumors, but also increases tumor growth, invasion, metastasis and angiogenesis. This review examines the LPA signaling pathway, its role in selected human malignancies, and the current state of development of inhibitors targeting molecules in this pathway.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"629-37"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29009648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted therapy for thyroid cancer: An updated review of investigational agents. 甲状腺癌的靶向治疗:研究药物的最新综述。
Hari A Deshpande, Scott N Gettinger, Julie A Sosa
{"title":"Targeted therapy for thyroid cancer: An updated review of investigational agents.","authors":"Hari A Deshpande,&nbsp;Scott N Gettinger,&nbsp;Julie A Sosa","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The treatment of thyroid cancer is evolving. The molecular mechanisms of carcinogenesis for many thyroid cancers have been investigated, and have yielded targets for potential therapies. These targets include VEGFR in the treatment of all thyroid cancers, BRAF in the treatment of papillary thyroid cancer, and RET in the treatment of medullary thyroid cancer (MTC). Many promising drugs that target one or more of these proteins are currently being evaluated, including sorafenib and sunitinib, both of which are still under development for the treatment of thyroid cancer but which have been approved for use in other malignancies. In addition, compounds such as vandetanib (AstraZeneca plc) and XL-184 (Bristol-Myers Squibb Co/Exelixis Inc) have demonstrated activity in early-phase clinical trials of MTC and are being tested further in randomized trials.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"661-8"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29009652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conatumumab, a fully human mAb against death receptor 5 for the treatment of cancer. Conatumumab,一种针对死亡受体5的全人单抗,用于治疗癌症。
Henry M Rosevear, Andrew J Lightfoot, Thomas S Griffith
{"title":"Conatumumab, a fully human mAb against death receptor 5 for the treatment of cancer.","authors":"Henry M Rosevear,&nbsp;Andrew J Lightfoot,&nbsp;Thomas S Griffith","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Conatumumab (AMG-655), under development by Amgen Inc and Japanese licensee Takeda Bio Development Center Ltd, is a fully human IgG1 mAb that binds to the extracellular domain of death receptor 5 (DR5) for the potential intravenous treatment of cancer. In vitro and in vivo studies have demonstrated that conatumumab induces apoptosis in cell lines derived from colon and pancreatic cancers, as well as in mice bearing xenograft tumors. Preclinical studies also indicated that conatumumab enhances the antitumor activity of agents, such as irinotecan and gemcitabine. The results of phase I clinical trials have demonstrated the safety of conatumumab as a monotherapy, as well as in combination with other antibody therapies or standard chemotherapeutic regimes. In addition, anti-conatumumab antibody responses have not been observed in the trials conducted to date. At the time of publication, initial results from phase I/II trials suggest a possible therapeutic role for conatumumab in patients with tumors expressing DR5.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":" ","pages":"688-98"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29011120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信