Hui Liu, Nan Zhang, Yijie Jia, Jun Wang, Aokun Ye, Siru Yang, Honghan Zhou, Yingli Lv, Chaohan Xu, Shuyuan Wang
{"title":"ncStem: a comprehensive resource of curated and predicted ncRNAs in cancer stemness.","authors":"Hui Liu, Nan Zhang, Yijie Jia, Jun Wang, Aokun Ye, Siru Yang, Honghan Zhou, Yingli Lv, Chaohan Xu, Shuyuan Wang","doi":"10.1093/database/baae081","DOIUrl":"10.1093/database/baae081","url":null,"abstract":"<p><p>Cancer stemness plays an important role in cancer initiation and progression, and is the major cause of tumor invasion, metastasis, recurrence, and poor prognosis. Non-coding RNAs (ncRNAs) are a class of RNA transcripts that generally cannot encode proteins and have been demonstrated to play a critical role in regulating cancer stemness. Here, we developed the ncStem database to record manually curated and predicted ncRNAs associated with cancer stemness. In total, ncStem contains 645 experimentally verified entries, including 159 long non-coding RNAs (lncRNAs), 254 microRNAs (miRNAs), 39 circular RNAs (circRNAs), and 5 other ncRNAs. The detailed information of each entry includes the ncRNA name, ncRNA identifier, disease, reference, expression direction, tissue, species, and so on. In addition, ncStem also provides computationally predicted cancer stemness-associated ncRNAs for 33 TCGA cancers, which were prioritized using the random walk with restart (RWR) algorithm based on regulatory and co-expression networks. The total predicted cancer stemness-associated ncRNAs included 11 132 lncRNAs and 972 miRNAs. Moreover, ncStem provides tools for functional enrichment analysis, survival analysis, and cell location interrogation for cancer stemness-associated ncRNAs. In summary, ncStem provides a platform to retrieve cancer stemness-associated ncRNAs, which may facilitate research on cancer stemness and offer potential targets for cancer treatment. Database URL: http://www.nidmarker-db.cn/ncStem/index.html.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karina Martinez, Jon Agirre, Yukie Akune, Kiyoko F Aoki-Kinoshita, Cecilia Arighi, Kristian B Axelsen, Evan Bolton, Emily Bordeleau, Nathan J Edwards, Elisa Fadda, Ten Feizi, Catherine Hayes, Callum M Ives, Hiren J Joshi, Khakurel Krishna Prasad, Sofia Kossida, Frederique Lisacek, Yan Liu, Thomas Lütteke, Junfeng Ma, Adnan Malik, Maria Martin, Akul Y Mehta, Sriram Neelamegham, Kalpana Panneerselvam, René Ranzinger, Sylvie Ricard-Blum, Gaoussou Sanou, Vijay Shanker, Paul D Thomas, Michael Tiemeyer, James Urban, Randi Vita, Jeet Vora, Yasunori Yamamoto, Raja Mazumder
{"title":"Functional implications of glycans and their curation: insights from the workshop held at the 16th Annual International Biocuration Conference in Padua, Italy.","authors":"Karina Martinez, Jon Agirre, Yukie Akune, Kiyoko F Aoki-Kinoshita, Cecilia Arighi, Kristian B Axelsen, Evan Bolton, Emily Bordeleau, Nathan J Edwards, Elisa Fadda, Ten Feizi, Catherine Hayes, Callum M Ives, Hiren J Joshi, Khakurel Krishna Prasad, Sofia Kossida, Frederique Lisacek, Yan Liu, Thomas Lütteke, Junfeng Ma, Adnan Malik, Maria Martin, Akul Y Mehta, Sriram Neelamegham, Kalpana Panneerselvam, René Ranzinger, Sylvie Ricard-Blum, Gaoussou Sanou, Vijay Shanker, Paul D Thomas, Michael Tiemeyer, James Urban, Randi Vita, Jeet Vora, Yasunori Yamamoto, Raja Mazumder","doi":"10.1093/database/baae073","DOIUrl":"10.1093/database/baae073","url":null,"abstract":"<p><p>Dynamic changes in protein glycosylation impact human health and disease progression. However, current resources that capture disease and phenotype information focus primarily on the macromolecules within the central dogma of molecular biology (DNA, RNA, proteins). To gain a better understanding of organisms, there is a need to capture the functional impact of glycans and glycosylation on biological processes. A workshop titled \"Functional impact of glycans and their curation\" was held in conjunction with the 16th Annual International Biocuration Conference to discuss ongoing worldwide activities related to glycan function curation. This workshop brought together subject matter experts, tool developers, and biocurators from over 20 projects and bioinformatics resources. Participants discussed four key topics for each of their resources: (i) how they curate glycan function-related data from publications and other sources, (ii) what type of data they would like to acquire, (iii) what data they currently have, and (iv) what standards they use. Their answers contributed input that provided a comprehensive overview of state-of-the-art glycan function curation and annotations. This report summarizes the outcome of discussions, including potential solutions and areas where curators, data wranglers, and text mining experts can collaborate to address current gaps in glycan and glycosylation annotations, leveraging each other's work to improve their respective resources and encourage impactful data sharing among resources. Database URL: https://wiki.glygen.org/Glycan_Function_Workshop_2023.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The biomedical relationship corpus of the BioRED track at the BioCreative VIII challenge and workshop.","authors":"Rezarta Islamaj, Chih-Hsuan Wei, Po-Ting Lai, Ling Luo, Cathleen Coss, Preeti Gokal Kochar, Nicholas Miliaras, Oleg Rodionov, Keiko Sekiya, Dorothy Trinh, Deborah Whitman, Zhiyong Lu","doi":"10.1093/database/baae071","DOIUrl":"10.1093/database/baae071","url":null,"abstract":"<p><p>The automatic recognition of biomedical relationships is an important step in the semantic understanding of the information contained in the unstructured text of the published literature. The BioRED track at BioCreative VIII aimed to foster the development of such methods by providing the participants the BioRED-BC8 corpus, a collection of 1000 PubMed documents manually curated for diseases, gene/proteins, chemicals, cell lines, gene variants, and species, as well as pairwise relationships between them which are disease-gene, chemical-gene, disease-variant, gene-gene, chemical-disease, chemical-chemical, chemical-variant, and variant-variant. Furthermore, relationships are categorized into the following semantic categories: positive correlation, negative correlation, binding, conversion, drug interaction, comparison, cotreatment, and association. Unlike most of the previous publicly available corpora, all relationships are expressed at the document level as opposed to the sentence level, and as such, the entities are normalized to the corresponding concept identifiers of the standardized vocabularies, namely, diseases and chemicals are normalized to MeSH, genes (and proteins) to National Center for Biotechnology Information (NCBI) Gene, species to NCBI Taxonomy, cell lines to Cellosaurus, and gene/protein variants to Single Nucleotide Polymorphism Database. Finally, each annotated relationship is categorized as 'novel' depending on whether it is a novel finding or experimental verification in the publication it is expressed in. This distinction helps differentiate novel findings from other relationships in the same text that provides known facts and/or background knowledge. The BioRED-BC8 corpus uses the previous BioRED corpus of 600 PubMed articles as the training dataset and includes a set of newly published 400 articles to serve as the test data for the challenge. All test articles were manually annotated for the BioCreative VIII challenge by expert biocurators at the National Library of Medicine, using the original annotation guidelines, where each article is doubly annotated in a three-round annotation process until full agreement is reached between all curators. This manuscript details the characteristics of the BioRED-BC8 corpus as a critical resource for biomedical named entity recognition and relation extraction. Using this new resource, we have demonstrated advancements in biomedical text-mining algorithm development. Database URL: https://codalab.lisn.upsaclay.fr/competitions/16381.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SoDCoD: a comprehensive database of Cu/Zn superoxide dismutase conformational diversity caused by ALS-linked gene mutations and other perturbations.","authors":"Riko Tabuchi, Yurika Momozawa, Yuki Hayashi, Hisashi Noma, Hidenori Ichijo, Takao Fujisawa","doi":"10.1093/database/baae064","DOIUrl":"10.1093/database/baae064","url":null,"abstract":"<p><p>A structural alteration in copper/zinc superoxide dismutase (SOD1) is one of the common features caused by amyotrophic lateral sclerosis (ALS)-linked mutations. Although a large number of SOD1 variants have been reported in ALS patients, the detailed structural properties of each variant are not well summarized. We present SoDCoD, a database of superoxide dismutase conformational diversity, collecting our comprehensive biochemical analyses of the structural changes in SOD1 caused by ALS-linked gene mutations and other perturbations. SoDCoD version 1.0 contains information about the properties of 188 types of SOD1 mutants, including structural changes and their binding to Derlin-1, as well as a set of genes contributing to the proteostasis of mutant-like wild-type SOD1. This database provides valuable insights into the diagnosis and treatment of ALS, particularly by targeting conformational alterations in SOD1. Database URL: https://fujisawagroup.github.io/SoDCoDweb/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":"0"},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rezarta Islamaj, Po-Ting Lai, Chih-Hsuan Wei, Ling Luo, Tiago Almeida, Richard A A Jonker, Sofia I R Conceição, Diana F Sousa, Cong-Phuoc Phan, Jung-Hsien Chiang, Jiru Li, Dinghao Pan, Wilailack Meesawad, Richard Tzong-Han Tsai, M Janina Sarol, Gibong Hong, Airat Valiev, Elena Tutubalina, Shao-Man Lee, Yi-Yu Hsu, Mingjie Li, Karin Verspoor, Zhiyong Lu
{"title":"The overview of the BioRED (Biomedical Relation Extraction Dataset) track at BioCreative VIII.","authors":"Rezarta Islamaj, Po-Ting Lai, Chih-Hsuan Wei, Ling Luo, Tiago Almeida, Richard A A Jonker, Sofia I R Conceição, Diana F Sousa, Cong-Phuoc Phan, Jung-Hsien Chiang, Jiru Li, Dinghao Pan, Wilailack Meesawad, Richard Tzong-Han Tsai, M Janina Sarol, Gibong Hong, Airat Valiev, Elena Tutubalina, Shao-Man Lee, Yi-Yu Hsu, Mingjie Li, Karin Verspoor, Zhiyong Lu","doi":"10.1093/database/baae069","DOIUrl":"10.1093/database/baae069","url":null,"abstract":"<p><p>The BioRED track at BioCreative VIII calls for a community effort to identify, semantically categorize, and highlight the novelty factor of the relationships between biomedical entities in unstructured text. Relation extraction is crucial for many biomedical natural language processing (NLP) applications, from drug discovery to custom medical solutions. The BioRED track simulates a real-world application of biomedical relationship extraction, and as such, considers multiple biomedical entity types, normalized to their specific corresponding database identifiers, as well as defines relationships between them in the documents. The challenge consisted of two subtasks: (i) in Subtask 1, participants were given the article text and human expert annotated entities, and were asked to extract the relation pairs, identify their semantic type and the novelty factor, and (ii) in Subtask 2, participants were given only the article text, and were asked to build an end-to-end system that could identify and categorize the relationships and their novelty. We received a total of 94 submissions from 14 teams worldwide. The highest F-score performances achieved for the Subtask 1 were: 77.17% for relation pair identification, 58.95% for relation type identification, 59.22% for novelty identification, and 44.55% when evaluating all of the above aspects of the comprehensive relation extraction. The highest F-score performances achieved for the Subtask 2 were: 55.84% for relation pair, 43.03% for relation type, 42.74% for novelty, and 32.75% for comprehensive relation extraction. The entire BioRED track dataset and other challenge materials are available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/ and https://codalab.lisn.upsaclay.fr/competitions/13377 and https://codalab.lisn.upsaclay.fr/competitions/13378. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumit Madan, Lisa Kühnel, Holger Fröhlich, Martin Hofmann-Apitius, Juliane Fluck
{"title":"Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks.","authors":"Sumit Madan, Lisa Kühnel, Holger Fröhlich, Martin Hofmann-Apitius, Juliane Fluck","doi":"10.1093/database/baae066","DOIUrl":"10.1093/database/baae066","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunhui Xu, Trey Shaw, Sai Akhil Choppararu, Yiwei Lu, Shaik Naveed Farooq, Yongfang Qin, Matt Hudson, Brock Weekley, Michael Fisher, Fei He, Jose Roberto Da Silva Nascimento, Nicholas Wergeles, Trupti Joshi, Philip D Bates, Abraham J Koo, Doug K Allen, Edgar B Cahoon, Jay J Thelen, Dong Xu
{"title":"FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants.","authors":"Chunhui Xu, Trey Shaw, Sai Akhil Choppararu, Yiwei Lu, Shaik Naveed Farooq, Yongfang Qin, Matt Hudson, Brock Weekley, Michael Fisher, Fei He, Jose Roberto Da Silva Nascimento, Nicholas Wergeles, Trupti Joshi, Philip D Bates, Abraham J Koo, Doug K Allen, Edgar B Cahoon, Jay J Thelen, Dong Xu","doi":"10.1093/database/baae074","DOIUrl":"10.1093/database/baae074","url":null,"abstract":"<p><p>FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function, similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features. Database URL: https://www.fatplants.net/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard A A Jonker, Tiago Almeida, Rui Antunes, João R Almeida, Sérgio Matos
{"title":"Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes.","authors":"Richard A A Jonker, Tiago Almeida, Rui Antunes, João R Almeida, Sérgio Matos","doi":"10.1093/database/baae068","DOIUrl":"10.1093/database/baae068","url":null,"abstract":"<p><p>The identification of medical concepts from clinical narratives has a large interest in the biomedical scientific community due to its importance in treatment improvements or drug development research. Biomedical named entity recognition (NER) in clinical texts is crucial for automated information extraction, facilitating patient record analysis, drug development, and medical research. Traditional approaches often focus on single-class NER tasks, yet recent advancements emphasize the necessity of addressing multi-class scenarios, particularly in complex biomedical domains. This paper proposes a strategy to integrate a multi-head conditional random field (CRF) classifier for multi-class NER in Spanish clinical documents. Our methodology overcomes overlapping entity instances of different types, a common challenge in traditional NER methodologies, by using a multi-head CRF model. This architecture enhances computational efficiency and ensures scalability for multi-class NER tasks, maintaining high performance. By combining four diverse datasets, SympTEMIST, MedProcNER, DisTEMIST, and PharmaCoNER, we expand the scope of NER to encompass five classes: symptoms, procedures, diseases, chemicals, and proteins. To the best of our knowledge, these datasets combined create the largest Spanish multi-class dataset focusing on biomedical entity recognition and linking for clinical notes, which is important to train a biomedical model in Spanish. We also provide entity linking to the multi-lingual Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) vocabulary, with the eventual goal of performing biomedical relation extraction. Through experimentation and evaluation of Spanish clinical documents, our strategy provides competitive results against single-class NER models. For NER, our system achieves a combined micro-averaged F1-score of 78.73, with clinical mentions normalized to SNOMED CT with an end-to-end F1-score of 54.51. The code to run our system is publicly available at https://github.com/ieeta-pt/Multi-Head-CRF. Database URL: https://github.com/ieeta-pt/Multi-Head-CRF.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving biomedical entity linking for complex entity mentions with LLM-based text simplification.","authors":"Florian Borchert, Ignacio Llorca, Matthieu-P Schapranow","doi":"10.1093/database/baae067","DOIUrl":"10.1093/database/baae067","url":null,"abstract":"<p><p>Large amounts of important medical information are captured in free-text documents in biomedical research and within healthcare systems, which can be made accessible through natural language processing (NLP). A key component in most biomedical NLP pipelines is entity linking, i.e. grounding textual mentions of named entities to a reference of medical concepts, usually derived from a terminology system, such as the Systematized Nomenclature of Medicine Clinical Terms. However, complex entity mentions, spanning multiple tokens, are notoriously hard to normalize due to the difficulty of finding appropriate candidate concepts. In this work, we propose an approach to preprocess such mentions for candidate generation, building upon recent advances in text simplification with generative large language models. We evaluate the feasibility of our method in the context of the entity linking track of the BioCreative VIII SympTEMIST shared task. We find that instructing the latest Generative Pre-trained Transformer model with a few-shot prompt for text simplification results in mention spans that are easier to normalize. Thus, we can improve recall during candidate generation by 2.9 percentage points compared to our baseline system, which achieved the best score in the original shared task evaluation. Furthermore, we show that this improvement in recall can be fully translated into top-1 accuracy through careful initialization of a subsequent reranking model. Our best system achieves an accuracy of 63.6% on the SympTEMIST test set. The proposed approach has been integrated into the open-source xMEN toolkit, which is available online via https://github.com/hpi-dhc/xmen.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CO-19 PDB 2.0: A Comprehensive COVID-19 Database with Global Auto-Alerts, Statistical Analysis, and Cancer Correlations.","authors":"Shahid Ullah, Yingmei Li, Wajeeha Rahman, Farhan Ullah, Muhammad Ijaz, Anees Ullah, Gulzar Ahmad, Hameed Ullah, Tianshun Gao","doi":"10.1093/database/baae072","DOIUrl":"10.1093/database/baae072","url":null,"abstract":"<p><p>Biological databases serve as critical basics for modern research, and amid the dynamic landscape of biology, the COVID-19 database has emerged as an indispensable resource. The global outbreak of Covid-19, commencing in December 2019, necessitates comprehensive databases to unravel the intricate connections between this novel virus and cancer. Despite existing databases, a crucial need persists for a centralized and accessible method to acquire precise information within the research community. The main aim of the work is to develop a database which has all the COVID-19-related data available in just one click with auto global notifications. This gap is addressed by the meticulously designed COVID-19 Pandemic Database (CO-19 PDB 2.0), positioned as a comprehensive resource for researchers navigating the complexities of COVID-19 and cancer. Between December 2019 and June 2024, the CO-19 PDB 2.0 systematically collected and organized 120 datasets into six distinct categories, each catering to specific functionalities. These categories encompass a chemical structure database, a digital image database, a visualization tool database, a genomic database, a social science database, and a literature database. Functionalities range from image analysis and gene sequence information to data visualization and updates on environmental events. CO-19 PDB 2.0 has the option to choose either the search page for the database or the autonotification page, providing a seamless retrieval of information. The dedicated page introduces six predefined charts, providing insights into crucial criteria such as the number of cases and deaths', country-wise distribution, 'new cases and recovery', and rates of death and recovery. The global impact of COVID-19 on cancer patients has led to extensive collaboration among research institutions, producing numerous articles and computational studies published in international journals. A key feature of this initiative is auto daily notifications for standardized information updates. Users can easily navigate based on different categories or use a direct search option. The study offers up-to-date COVID-19 datasets and global statistics on COVID-19 and cancer, highlighting the top 10 cancers diagnosed in the USA in 2022. Breast and prostate cancers are the most common, representing 30% and 26% of new cases, respectively. The initiative also ensures the removal or replacement of dead links, providing a valuable resource for researchers, healthcare professionals, and individuals. The database has been implemented in PHP, HTML, CSS and MySQL and is available freely at https://www.co-19pdb.habdsk.org/. Database URL: https://www.co-19pdb.habdsk.org/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}