{"title":"DeepTransformer: Node Classification Research of a Deep Graph Network on an Osteoporosis Graph based on GraphTransformer","authors":"Yixin Liu, Guowei Jiang, Miaomiao Sun, Ziyan Zhou, Pengchen Liang, Qing Chang","doi":"10.2174/0115734099266731231115065030","DOIUrl":"https://doi.org/10.2174/0115734099266731231115065030","url":null,"abstract":"Background:: Osteoporosis (OP) is one of the most common diseases in the elderly population. It is mostly treated with medication, but drug research and development have the disadvantage of taking a long time and having a high cost. Objective:: Therefore, we developed a graph neural network with the help of artificial intelligence to provide new ideas for drug research and development for OP. Methods:: In this study, we built a new osteoporosis graph (called OPGraph) and proposed a deep graph neural network (called DeepTransformer) to predict new drugs for OP. OPGraph is a graph data model established by gathering features and their interrelationships from a vast amount of OP data. DeepTransformer uses GraphTransformer as its foundational network and applies residual connections for deep layering. Results:: The analysis and results showed that DeepTransformer outperformed numerous models on OPGraph, with area under the curve (AUC) and area under the precision-recall curve (AUPR) reaching 0.9916 and 0.9911, respectively. In addition, we conducted an in vitro validation experiment on two of the seven predicted compounds (Puerarin and Aucubin), and the results corroborated the predictions of our model. Conclusion:: The model we developed with the help of artificial intelligence can effectively reduce the time and cost of OP drug development and reduce the heavy economic burden brought to patient's family by complications caused by osteoporosis.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"32 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the Molecular Mechanisms of Bushen Huoxue Decoction in Breast Cancer via Network Pharmacology and in vitro experiments","authors":"Hongyi Liang, Guoliang Yin, Guangxi Shi, Xiaofei Liu, Zhiyong Liu, Jingwei Li","doi":"10.2174/0115734099269728231115060827","DOIUrl":"https://doi.org/10.2174/0115734099269728231115060827","url":null,"abstract":"Aim:: Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC). Objectives:: To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC. Materials and Methods:: Network pharmacology and in vitro experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC. Results:: According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels. Conclusion:: The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis via the Caspase cascade in LASBC cells.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"160 ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgements to Reviewers","authors":"","doi":"10.2174/157340991906230407123048","DOIUrl":"https://doi.org/10.2174/157340991906230407123048","url":null,"abstract":"","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Iminosugars as Antiviral Agents against SARS-CoV-2 Main Protease: Inhibitor Design and Optimization, Molecular Docking, and Molecular Dynamics Studies to Explore Potential Inhibitory Effect of 1-Deoxynojirmycin Series.","authors":"Vashima Miglani, Parul Sharma, Anudeep Kumar Narula","doi":"10.2174/1573409920666230823094343","DOIUrl":"https://doi.org/10.2174/1573409920666230823094343","url":null,"abstract":"<p><strong>Background: </strong>The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses an enormous challenge to human health and economy at a global level. According to WHO's latest data, till now, there have been a total of 641,435,884 confirmed cases of COVID-19, and the associated deaths are 6,621,060. Though few vaccinations have been approved for emergency usage, antiviral medications for long-term therapeutics are still being sought. The current research seeks to identify the inhibitory effect of iminosugars, particularly 1-deoxynojirmycin (IDNJ) series, against SARS-CoV-2 main protease (SARS-CoV2-Mpro) using an inhibitor optimization approach for 1DNJ series.</p><p><strong>Aim: </strong>The aim of this study was to investigate the inhibitory effect of iminosugars, specifically 1-deoxynojirmycin (1-DNJ) derivatives, on SARS-CoV-2 main protease (Mpro) as it plays a vital role in viral propagation and transcription and is shaped like a heart.</p><p><strong>Objective: </strong>The main objective of this study was to find the possibility of 1-DNJ derivatives being potent inhibitors against SARS CoV2 Mpro. This study was focused on finding the most probable conformation in which DNJ derivatives could bind to Mpro. Another objective was to obtain molecular-level details by getting insights into stable interactions formed between the ligand and receptor.</p><p><strong>Method: </strong>In silico molecular mechanics (MM) based techniques were employed to identify the best-docked inhibitors using molecular docking, and complexes that showed stable interactions were further subjected to 200 ns of molecular dynamics (MD) simulations to check the stability of ligand into the binding pocket of SARS-CoV2-Mpro. The inhibitors that formed stable complexes were further tested for their ADME properties in order to check the pharmacokinetic parameters as well as their therapeutic importance.</p><p><strong>Result: </strong>Docking was performed on 29 compounds from two different series against SARS-CoV-2 main protease, Mpro (PDB ID: 6LZE). Twelve compounds were found to have high docking scores and better interactions with the active site of Mpro, as compared to the co-crystallized ligand. Furthermore, the three highest-scoring docked compounds (17a, 7, and 8) depicted strong and stable complex formation, throughout the 200 ns molecular dynamics simulation, by analyzing the binding energy (MM/GBSA). The molecules were discovered to form stable interactions with conserved active-site residues, which play an important role in demonstrating activity in structure-based drug design. The ADMET analysis was performed using Qikprop, and the proposed stable derivatives passed all of the needed drug discovery standards, potentially inhibiting the Mpro of SARS-CoV-2.</p><p><strong>Conclusion: </strong>The present findings confer opportunities for compounds 17a, 7, and 8 that could be developed as new therapeutic agents against COVID-19. These compounds are","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-inflammatory and Anti-arthritic Properties of Mucuna gigantea Plant Extracts: Establishing by Molecular Docking Study.","authors":"Satish Kumar, Pratima Srivastava, Somdutt Mujwar, Vinod Gauttam, Sumeet Gupta","doi":"10.2174/1573409920666230817142114","DOIUrl":"https://doi.org/10.2174/1573409920666230817142114","url":null,"abstract":"<p><p>Background Mucuna giganteais a traditional plant reported in the management of nervous disorders, male infertility, etc., and also exhibits aphrodisiac, anti-oxidant, and anti-diabetic properties. Very few studies are conducted on Mucuna gigantea. It has not been pharmacologically evaluated for rheumatoid arthritis (RA). In RA, the body's natural defence mechanism gets confused and begins to target the healthy tissues in the body, which leads to joint pain, swelling, bone erosion, and joint stiffness. It is a condition that is classified as an auto-immune disorder. Methods In-silico docking depicted that beta-sitosterol is present in Mucuna gigantea out of ligand library prepared based on a literature survey using computational analysis. Inflammation was induced by carrageen and chronic inflammation was induced by Freund's complete adjuvant in the plantar surface of the rats. The petroleum ether, ethanolic and aqueous extracts in three divided doses (75, 150, and 300 mg/kg) were administered orally. Diclofenac sodium (10 mg/kg), prednisolone (5 mg/kg), and methotrexate (0.5 mg/kg) were used as standard. The statistical significance between means was analyzed using one-way ANOVA, followed by Dunnett's multiple range test. The values are expressed as mean ± SD for each group (n=6), and aP<0.0001, bP<0.001, and cP<0.05 were compared with a negative control group. Results Ethanolic and petroleum ether extracts showed a statistically significant aP<0.0001 effect at 3hr with 300mg/kg effect in analgesic activity, whereas aqueous extracts showed statistically significant aP<0.0001 effect at 1.5hr with 150 and 300mg/kg. In the carrageen-induced model, all three extracts at 300 mg/kg showed a statistically significant aP<0.0001 effect from 2- 4hr. In Freund's adjuvant model, all three extracts at all doses showed a statistically significant aP<0.0001 effect. Also, Mucuna gigantea remarkably ameliorated altered WBCs, rheumatoid factor, and positively modified radiographic and histopathological changes. Conclusion Taken together, these results support the traditional use of Mucuna gigantea as a potent anti-inflammatory and anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Zhang, Xiaohan Shen, Tongzhou Hu, Qiuyan Weng, Jinming Han
{"title":"Prediction of Rhizoma Drynariae Targets in the Treatment of Osteonecrosis of the Femoral Head based on Network Pharmacology and Experimental Verification.","authors":"Yong Zhang, Xiaohan Shen, Tongzhou Hu, Qiuyan Weng, Jinming Han","doi":"10.2174/1573409918666221006122426","DOIUrl":"https://doi.org/10.2174/1573409918666221006122426","url":null,"abstract":"<p><strong>Background: </strong>Rhizoma drynariae, a classic prescription in traditional Chinese medicine, has long been used for the treatment of osteonecrosis of the femoral head (ONFH), but its potential targets and molecular mechanisms remain to be further explored.</p><p><strong>Objective: </strong>This study aims to explore the mechanism of Rhizoma drynariae in ONFH treatment via network pharmacology and in vitro experiments.</p><p><strong>Methods: </strong>Targets of Rhizoma drynariae and ONFH were predicted using relevant databases, and intersection analysis was conducted to screen for shared targets. A PPI network of the shared targets was built using STRING to identify the key targets. Functional enrichment analyses of Gene Ontology and KEGG pathway data were carried out using R software. The compound-target-pathway network was constructed for Rhizoma Drynariae in the treatment with ONFH using Cytoscape 3.9.0. Cell proliferation was assessed using CCK8 and apoptosis was detected using (Propidium Iodide) PI staining and western blotting.</p><p><strong>Results: </strong>This study depicts the interrelationship of the bioactive compounds of Rhizoma drynariae with ONFH-associated signaling pathways and target receptors and is a potential reagent for ONFH treatment.</p><p><strong>Conclusion: </strong>Based on a network pharmacology analysis and in vitro experiment, we predicted and validated the active compounds and potential targets of Rhizoma drynariae, provide valuable evidence of Rhizoma Drynariae in future ONFH treatment.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 1","pages":"13-23"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9123146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongli Guo, Jing Jin, Jianghui Liu, Meng Ren, Yutong He
{"title":"Network Pharmacological Study of Compound Kushen Injection in Esophageal Cancer.","authors":"Dongli Guo, Jing Jin, Jianghui Liu, Meng Ren, Yutong He","doi":"10.2174/1573409919666230111155954","DOIUrl":"https://doi.org/10.2174/1573409919666230111155954","url":null,"abstract":"<p><strong>Aim: </strong>To provide new methods and ideas for the clinical application of integrated traditional Chinese and Western medicine in the treatment of esophageal cancer.</p><p><strong>Background: </strong>Traditional Chinese medicine compound Kushen injection (CKI) has been widely used in the clinic with adjuvant radiotherapy and chemotherapy. However, the mechanism of action of CKI as adjuvant therapy for esophageal cancer has not yet been described.</p><p><strong>Methods: </strong>This study is based on network pharmacology, data mining, and molecular docking technology to explore the mechanism of action of CKI in the treatment of esophageal cancer. We obtained the effective ingredients and targets of CKI from the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) and esophageal cancer-related genes from the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases.</p><p><strong>Results: </strong>CKI mainly contains 58 active components. Among them, the top 5 active ingredients are quercetin, luteolin, naringenin, formononetin, and beta-sitostero. The target protein of the active ingredient was matched with the genes associated with esophageal cancer. The active ingredients targeted 187 esophageal cancer target proteins, including AKT1, MAPK1, MAPK3, TP53, HSP90AA1, and other proteins. Then, we enriched and analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and used AutoDockVina to dock the core targets and compounds. Finally, PyMOL and Ligplot were used for data visualization.</p><p><strong>Conclusion: </strong>This study provides a new method and ideas for the clinical application of integrated traditional Chinese and Western medicine in the treatment of esophageal cancer.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 5","pages":"367-381"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Benzothiazole Clubbed Imidazolone Derivatives: Synthesis, Molecular Docking, DFT Studies, and Antimicrobial Studies.","authors":"Nisheeth Desai, Abhay Maheta, Aratiba Jethawa, Iqrar Ahmad, Harun Patel, Bharti Dave","doi":"10.2174/1573409919666221121115556","DOIUrl":"https://doi.org/10.2174/1573409919666221121115556","url":null,"abstract":"<p><strong>Aim: </strong>This study aims to synthesize antimicrobial agents and their molecular docking, and DFT studies of benzothiazole-imidazolone scaffolds.</p><p><strong>Background: </strong>Benzothiazole and imidazolone analogues are of interest due to their potential activity against microbial infections. In search of suitable antimicrobial compounds, we report here the synthesis, characterization, and biological activities of benzothiazole and imidazolone analogues (4a-l).</p><p><strong>Objective: </strong>The benzothiazole clubbed imidazolone motifs were synthesized, characterized, and screened for their antimicrobial activity. Molecular docking was carried out for the development of antimicrobial agents based on the results of biological activity obtained.</p><p><strong>Methods: </strong>We have synthesized a new series of benzothiazole-clubbed imidazolone hybrids by using multi-step reactions in the search for antimicrobial agents (4a-l). The structures were determined by <sup>1</sup>H NMR, <sup>13</sup>C NMR, IR, and mass spectroscopy techniques. Moreover, synthesized compounds were evaluated for their antimicrobial activity by using a Serial Broth Dilution method. In addition, molecular electrostatic potential, geometric optimization, and molecular reactivity analyses (HOMO-LUMO) of 4c, which is one of the compounds with the highest antibacterial activity, were performed.</p><p><strong>Results: </strong>The in vitro antimicrobial activity was evaluated against pathogenic strains. Among them, compounds 4c showed the most potent biological activity against Gram-negative bacteria, E. coli with MIC values of 50 μg/mL, and compound 4c active against A. clavatus with MIC values of 100 μg/mL. Active compound 4c HUMO-LUMO energies, molecular electrostatic potential analysis, and geometric optimization parameters were calculated with a 6-31G ** base set using DFT/B3LYP theory, and the results were displayed. Molecular docking studies were performed on E. coli DNA Gyrase B to understand the binding interaction of compound 4c, and it was observed that compound 4c interacted with Arg76 amino acid of the active site through hydrophobic interaction.</p><p><strong>Conclusion: </strong>Benzothiazole-clubbed imidazolone hybrids (4a-l) indicated promising antimicrobial activity. Among them, compounds 4b (MIC=50 μg/mL C. albicans), 4c (MIC=50 μg/mL, E. coli), 4e (MIC= 100 μg/mL, A. niger), and 4g (MIC= 50 μg/mL, S. pyogenes) with electronwithdrawing bromo, chloro, and fluoro group at the para position of the phenyl ring on benzothiazole-imidazolone hybrids indicated remarkable potency compared to the standard drug. The geometric optimization, molecular reactivity, and MESP analyses of 4c were calculated with the B3LYP/6-31G ** base set and ΔE = ELUMO-EHOMO, which was found to be - 0.12096 eV. In addition, the binding affinity scores correlated well with the in vitro antimicrobial activity (4c), while their binding modes proposed the involvement of ster","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 2","pages":"123-136"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9818096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueqin Chen, Jingyue Yu, Huan Lei, Lei Li, Xupin Liu, Bo Liu, Yanfei Xie, Haihong Fang
{"title":"Exploring the Mechanism of Buyang Huanwu Decoction Alleviating Restenosis by Regulating VSMC Phenotype Switching and Proliferation by Network Pharmacology and Molecular Docking.","authors":"Xueqin Chen, Jingyue Yu, Huan Lei, Lei Li, Xupin Liu, Bo Liu, Yanfei Xie, Haihong Fang","doi":"10.2174/1573409919666230203144207","DOIUrl":"https://doi.org/10.2174/1573409919666230203144207","url":null,"abstract":"<p><strong>Background: </strong>Buyang Huanwu Decoction (BHD) is used to regulate blood circulation and clear collaterals and is widely used in coronary heart disease. However, the active compounds and the mechanism of BHD used to treat restenosis are less understood.</p><p><strong>Objective: </strong>The study aimed to explore the potential mechanism of Buyang Huanwu decoction BHD for the treatment of restenosis using network pharmacology and molecular docking experiments.</p><p><strong>Methods: </strong>The bioactive components of BHD and their corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopaedia of Traditional Chinese Medicine (ETCM) databases as well as literature. Restenosisassociated therapeutic genes were identified from the OMIM, Drugbank, GEO, and Dis- GeNET databases. Genes related to the vascular smooth muscle cell (VSMC) phenotype were obtained from the gene ontology (GO) database and literature. The core target genes for the drug-disease-VSMC phenotype were identified using the Venn tool and Cytoscape software. Moreover, the \"drug-component-target-pathway\" network was constructed and analyzed, and pathway enrichment analysis was performed. The connection between the main active components and core targets was analyzed using the AutoDock tool, and PyMOL was used to visualize the results.</p><p><strong>Results: </strong>The \"compound-target-disease\" network included 80 active ingredients and 599 overlapping targets. Among the bioactive components, quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin had high degree values, and the core targets included TP53, MYC, APP, UBC, JUN, EP300, TGFB1, UBB, SP1, MAPK1, SMAD2, CTNNB1, FOXO3, PIN1, EGR1, TCF4, FOS, SMAD3, and CREBBP. A total of 365 items were obtained from the GO functional enrichment analysis (p < 0.05), whereas the enrichment analysis of the KEGG pathway identified 30 signaling pathways (p < 0.05), which involved the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, TLR7/8 cascade, and others. The molecular docking results revealed quercetin, luteolin, and ligustilide to have good affinity with the core targets MYC and TP53.</p><p><strong>Conclusion: </strong>The active ingredients in BHD might act on TP53, MYC, APP, UBC, JUN, and other targets through its active components (such as quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin). This action of BHD may be transmitted via the involvement of multiple signaling pathways, including the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, and TLR7/8 cascade, to treat restenosis by inhibiting the phenotype switching and proliferation of VSMC.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 6","pages":"451-464"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9826039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kavita Rana, Avijit Mazumder, Salahuddin, Anurag Agrawal, Jagdish K Sahu
{"title":"Synthesis, <i>in vivo</i> Biological Evaluation and Molecular Docking Study of Some Newer Oxadiazole Derivatives as Anticonvulsant, Antibacterial and Analgesic Agents.","authors":"Kavita Rana, Avijit Mazumder, Salahuddin, Anurag Agrawal, Jagdish K Sahu","doi":"10.2174/1573409919666230207103707","DOIUrl":"https://doi.org/10.2174/1573409919666230207103707","url":null,"abstract":"<p><strong>Background: </strong>The compounds containing heterocyclic cores with O, N and/or S atoms are bioactive and valuable molecules in the field of drug discovery and development. There are several applications in different areas for the molecules having oxadiazole moiety in their structures viz. herbicides and corrosion inhibitors, electron-transport materials, polymers and luminescent materials. Hence, demand for new anticonvulsant, antibacterial and analgesic agents has turned into an imperative assignment in the area of medicinal chemistry to improve therapeutic efficacy as well as safety.</p><p><strong>Methods: </strong>In the journey of new anticonvulsive, antibacterial and analgesic molecules with better potency, some newer Oxadiazole analogues were attained by a sequence of synthetic steps with the substituted acrylic acids. IR and <sup>1</sup>H-NMR spectral data were used for the structure elucidation of obtained chemical compounds. In this perspective, the anticonvulsant, antibacterial and analgesic activities were evaluated for synthetically obtained newer chemical moieties. Furthermore, a molecular docking study was performed to elucidate the binding modes of synthesized ligands in the active pockets of Cox-1/2 enzymes, DNA Gyrase and GABA inhibitors.</p><p><strong>Results: </strong>It has been observed that all the synthetic molecules showed good analgesic activity while A1 molecule demonstrated better analgesic activity. In the case of anticonvulsant and antibacterial activity among other ligands, C1 molecule possessed profound anticonvulsant activity whereas B1 molecule showed maximum antibacterial activity and molecular docking study also endorsed the same consequences.</p><p><strong>Conclusion: </strong>It might be recognized from the present study that prepared compounds are distinctive in lieu of their structure and noticeable biological activity. In the quest for a newer group of anticonvulsant, antibacterial and analgesic molecules, these compounds might be useful for the society.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 6","pages":"438-450"},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9477174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}