George J. Dugbartey , Karl K. Alornyo , Christabel O. Dapaa-Addo , Emmanuel Botchway , Emmanuel K. Kwashie , Yvonne Harley
{"title":"Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases","authors":"George J. Dugbartey , Karl K. Alornyo , Christabel O. Dapaa-Addo , Emmanuel Botchway , Emmanuel K. Kwashie , Yvonne Harley","doi":"10.1016/j.crphar.2024.100206","DOIUrl":"10.1016/j.crphar.2024.100206","url":null,"abstract":"<div><div>Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major global public health concern. This has put economic burden on the public healthcare system and causing significant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence making these drugs a “necessary evil”. In recent times, antioxidant therapy has been explored as a potential pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharmacological management of many kidney diseases through its antioxidant and other therapeutic properties by activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of kidney diseases while giving hope to these patients.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100206"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Oludele Olanlokun , Oshireku Wisdom Abiodun , Adekunle Theophilus Adegbuyi , Neil Anthony Koorbanally , Olufunso Olabode Olorunsogo
{"title":"Mefloquine-curcumin combinations improve host mitochondrial respiration and decrease mitotoxic effects of mefloquine in Plasmodium berghei-infected mice","authors":"John Oludele Olanlokun , Oshireku Wisdom Abiodun , Adekunle Theophilus Adegbuyi , Neil Anthony Koorbanally , Olufunso Olabode Olorunsogo","doi":"10.1016/j.crphar.2024.100180","DOIUrl":"10.1016/j.crphar.2024.100180","url":null,"abstract":"<div><p><em>Plasmodium</em> infection is a health challenge. Although, antiplasmodial drugs kill the parasites, information on the effects of infection and drugs on the expression of some genes is limited.</p><p>Malaria was induced in two different studies using NK65 (chloroquine-susceptible, study 1), and ANKA (chloroquine-resistant, study 2) strains of <em>Plasmodium berghei</em> in 30 male Swiss mice (n = 5) in each study. Mice orally received 10 mL/kg distilled water, (infected control), Mefloquine (MF) (10 mg/kg), MF and Curcumin (CM) (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (un-infected) were used as the control. After treatment, total Ribonucleic acid (RNA) was isolated from liver and erythrocytes while Deoxyribonucleic acid (DNA)-free RNA were converted to cDNA. Polymerase Chain Reaction (PCR) amplification was performed and relative expressions of <em>FIKK12, AQP3, P38 MAPK, NADH</em> oxidoreductase, and cytochrome oxidase expressions were determined. Markers of glycolysis, toxicity and antioxidants were determined using ELISA assays. While the expression of <em>FIKK12</em> was blunted by MF in the susceptible study, co-treatment with curcumin (25 mg/kg) yielded the same results in the chloroquine-resistant study. Similar results were obtained on <em>AQP3</em> in both studies. Curcumin decreased <em>P38 MAPK</em> in both studies. <em>Plasmodium</em> infection decreased <em>NADH</em> oxidoreductase and cytochrome oxidase but mefloquine-curcumin restored the expression of these genes. While glycolysis and toxicity were inhibited, antioxidant systems improved in the treated groups. Curcumin is needed for effective therapeutic efficacy and prevention of toxicity. <em>Plasmodium</em> infection and treatment modulate the expressions of some genes in the host. Curcumin combination with mefloquine modulates the expression of some genes in the host.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"6 ","pages":"Article 100180"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000075/pdfft?md5=5c540566dbefe3538d1df92bdff79031&pid=1-s2.0-S2590257124000075-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140760778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrey Y. Vinokurov , Marina Y. Pogonyalova , Larisa Andreeva , Andrey Y. Abramov , Plamena R. Angelova
{"title":"Energy substrate supplementation increases ATP levels and is protective to PD neurons","authors":"Andrey Y. Vinokurov , Marina Y. Pogonyalova , Larisa Andreeva , Andrey Y. Abramov , Plamena R. Angelova","doi":"10.1016/j.crphar.2024.100187","DOIUrl":"10.1016/j.crphar.2024.100187","url":null,"abstract":"<div><p>Alteration of mitochondrial metabolism by various mutations or toxins leads to various neurological conditions. Age-related changes in energy metabolism could also play the role of a trigger for neurodegenerative disorders. Nonetheless, it is not clear if restoration of ATP production or supplementation of brain cells with substrates for energy production could be neuroprotective. Using primary neurons and astrocytes, and neurons with familial forms of neurodegenerative disorders we studied whether various substrates of energy metabolism could improve mitochondrial metabolism and stimulate ATP production, and whether increased ATP levels could protect cells against glutamate excitotoxicity and neurodegeneration. We found that supplementation of neurons with several substrates, or combination thereof, for the TCA cycle and cellular respiration, and oxidative phosphorylation resulted in an increase in mitochondrial NADH level and in mitochondrial membrane potential and led to an increased level of ATP in neurons and astrocytes. Subsequently, these cells were protected against energy deprivation during ischemia or glutamate excitotoxicity. Provision of substrates for energy metabolism to cells with familial forms of Parkinson's disease also prevented triggering of cell death. Thus, restoration of energy metabolism and increase of ATP production can play neuroprotective role in neurodegeneration. A combination of a succinate salt of choline and nicotinamide provided the best results.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"6 ","pages":"Article 100187"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000142/pdfft?md5=fa4f852b11d98e050ced37db3c1bf9e8&pid=1-s2.0-S2590257124000142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies","authors":"Emeka Eze Joshua Iweala , Doris Nnenna Amuji , Abimbola Mary Oluwajembola , Eziuche Amadike Ugbogu","doi":"10.1016/j.crphar.2024.100204","DOIUrl":"10.1016/j.crphar.2024.100204","url":null,"abstract":"<div><div>Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liraglutide improves adipose tissue remodeling and mitochondrial dynamics in a visceral obesity model induced by a high-fat diet","authors":"Vanessa Touceda , Florencia Fontana Estevez , Leonardo Cacciagiú , Paola Finocchietto , Romina Bustos , Agustina Vidal , Gabriela Berg , Celina Morales , Germán González , Veronica Miksztowicz","doi":"10.1016/j.crphar.2024.100185","DOIUrl":"10.1016/j.crphar.2024.100185","url":null,"abstract":"<div><p>Central obesity is characterized by visceral adipose tissue (VAT) expansion, considered one of the main risk factors for metabolic complications. In recent years, new drugs have been studied for obesity treatment. Liraglutide (LGT), a GLP-1 agonist, decreases body weight, however, several mechanisms of action on VAT are still unknown.</p></div><div><h3>Aim</h3><p>to study the effect of LGT on factors associated with VAT remodeling and mitochondrial dynamics in mice fed a high-fat diet (HFD).</p></div><div><h3>Methods</h3><p>C57BL/6 mice were divided into Control (C) and HFD. After 15 weeks of feeding, each group was subdivided according to LGT administration for 5 weeks: C, C + LGT, HFD, and HFD + LGT. In epididymal AT (EAT) we evaluated histological and mitochondrial characteristics, vascularity, gelatinase activity (MMPs), and galectin-3 expression.</p></div><div><h3>Results</h3><p>HFD presented larger adipocytes (p < 0.05), and lower vascular density and MMP-9 activity (p < 0.01) than C, while a major number of smaller adipocytes (p < 0.05) and an increase in vascularity (p < 0.001) and MMP-9 activity (p < 0.01) was observed in HFD + LGT. Collagen content was higher (p < 0.05) in EAT from HFD and decreased in HFD + LGT. In C, C + LGT, and HFD + LGT, mitochondria were predominantly tubular-shaped while in HFD mitochondria were mostly spherical (p < 0.001).</p></div><div><h3>Conclusion</h3><p>LGT positively influences VAT behavior by modulating gelatinase activity, enhancing vascularization, and improving adipocyte histological characteristics. Additionally, LGT improves mitochondrial dynamics, a process that would favor VAT functionality.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"6 ","pages":"Article 100185"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000129/pdfft?md5=2d5a86602bcffd980508a12e69fbcb26&pid=1-s2.0-S2590257124000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edgar G. Ordóñez-Rubiano MD, PhD (c) , Nicolás Rincón-Arias MD , Sebastian Espinosa MD , William J. Shelton MD , Andres F. Salazar , Alba Cómbita MSc, PhD , Matías Baldoncini MD , Sabino Luzzi MD, PhD , César Payán-Gómez MD, PhD , Diego F. Gómez- Amarillo MD, MSc , Fernando Hakim MD , Javier G. Patiño-Gómez MD , Rafael Parra- Medina MD, PhD
{"title":"The potential of miRNA-based approaches in glioblastoma: An update in current advances and future perspectives","authors":"Edgar G. Ordóñez-Rubiano MD, PhD (c) , Nicolás Rincón-Arias MD , Sebastian Espinosa MD , William J. Shelton MD , Andres F. Salazar , Alba Cómbita MSc, PhD , Matías Baldoncini MD , Sabino Luzzi MD, PhD , César Payán-Gómez MD, PhD , Diego F. Gómez- Amarillo MD, MSc , Fernando Hakim MD , Javier G. Patiño-Gómez MD , Rafael Parra- Medina MD, PhD","doi":"10.1016/j.crphar.2024.100193","DOIUrl":"https://doi.org/10.1016/j.crphar.2024.100193","url":null,"abstract":"<div><p>Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100193"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000208/pdfft?md5=e3fb5cee84b6f649ec2a936785e8f6e2&pid=1-s2.0-S2590257124000208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mujahed I. Mustafa , Awad A. Alzebair , Ahmed Mohammed
{"title":"Development of Recombinant Antibody by Yeast Surface Display Technology","authors":"Mujahed I. Mustafa , Awad A. Alzebair , Ahmed Mohammed","doi":"10.1016/j.crphar.2024.100174","DOIUrl":"10.1016/j.crphar.2024.100174","url":null,"abstract":"<div><p>Recombinant antibodies have emerged as powerful tools in various fields, including therapeutics, diagnostics, and research applications. The selection of high-affinity antibodies with desired specificity is a crucial step in the development of recombinant antibody-based products. In recent years, yeast surface display technology has gained significant attention as a robust and versatile platform for antibody selection. This graphical review provides an overview of the yeast surface display technology and its applications in recombinant antibody selection. We discuss the key components involved in the construction of yeast surface display libraries, including the antibody gene libraries, yeast host strains, and display vectors. Furthermore, we highlight the strategies employed for affinity maturation and optimization of recombinant antibodies using yeast surface display. Finally, we discuss the advantages and limitations of this technology compared to other antibody selection methods. Overall, yeast surface display technology offers a powerful and efficient approach for the selection of recombinant antibodies, enabling the rapid generation of high-affinity antibodies for various applications.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"6 ","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000014/pdfft?md5=6b65539c630be8a3142504caae389fe9&pid=1-s2.0-S2590257124000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The novel inhaled dual PDE3 and PDE4 inhibitor ensifentrine for the treatment of COPD: A systematic review and meta-analysis protocol on trough FEV1 and exacerbation according to PRISMA statement","authors":"Luigino Calzetta , Mario Cazzola , Shima Gholamalishahi , Paola Rogliani","doi":"10.1016/j.crphar.2024.100195","DOIUrl":"https://doi.org/10.1016/j.crphar.2024.100195","url":null,"abstract":"<div><p>The investigation of ensifentrine, an inhaled dual phosphodiesterase (PDE)3 and PDE4 inhibitor, for chronic obstructive pulmonary disease (COPD) maintenance therapy presents a significant clinical interest. Despite promising results from recent Phase III trials, a comprehensive synthesis of its therapeutic efficacy in COPD is lacking. This protocol outlines the first registered systematic review and meta-analysis in PROSPERO to assess the impact of ensifentrine on trough forced expiratory volume in the 1st second (FEV<sub>1</sub>) and acute exacerbations of COPD. By conducting a rigorous literature search and employing solid methodologies, this endeavour aims to provide robust evidence on the real efficacy of ensifentrine. Anticipated outcomes include a significant improvement in trough FEV<sub>1</sub> and a reduction in AECOPD risk among ensifentrine-treated patients compared to controls, corroborating its bronchodilator and anti-inflammatory properties. The meta-analysis expects to reveal consistent results across different trials, enhancing confidence in the findings. Additionally, subgroup analyses may unveil factors influencing the efficacy of ensifentrine, guiding optimal therapeutic strategies. Overall, this protocol holds the potential to inform clinical practice and regulatory decisions, positioning ensifentrine as a valuable addition to COPD management.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100195"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000221/pdfft?md5=c1dd1dd9bb8e3d2305050b6a5ff9b591&pid=1-s2.0-S2590257124000221-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of 2-((4-(chloromethyl)benzoyl)oxy)benzoate acid for analgesic tablet dosage form formulation","authors":"Wuryanto Hadinugroho, Yudy Tjahjono, Kuncoro Foe, Senny Yesery Esar, Caroline Caroline, Maria Annabella Jessica, Hendy Wijaya","doi":"10.1016/j.crphar.2024.100200","DOIUrl":"10.1016/j.crphar.2024.100200","url":null,"abstract":"<div><p>The 2-((4-(chloromethyl)benzoyl)oxy)benzoic acid (4CH<sub>2</sub>Cl) is a potential analgesic compound derived from salicylic acid and 4-chloromethyl benzoyl chloride. Characterization required 4CH<sub>2</sub>Cl for the formulation of tablet dosage forms. This study aims investigate the effect of SSG, PVP-K30, and the combination of SSG*PVP K-30 on the formulation of 4CH<sub>2</sub>Cl tablets. Additionally, this study aimed to obtain the optimum 4CH<sub>2</sub>Cl tablet composition. The experiment followed the two-factor simplex lattice design and direct compression method. The analgesic activity of 4CH<sub>2</sub>Cl in the optimal tablet was investigated using the hot-plate methods. The ANOVA of linear models is acceptable and the polynomial coefficients of quadratic models are similar to those of linear models. The coefficient of the linear model shows that SSG and PVP K-30 increase the Carr index (16.26; 20.61), Hausner ratio (1.19; 1.29), hardness (4.19; 9.39), friability (0.48; 0.67), disintegration time (0.34; 7.50), and drug release (85.29; 97.69). The coefficient of the quadratic model shows that SSG*PVP K-30 increased the Carr index (1.90), Hausner ratio (0.04), hardness (1.88), friability (0.06), and drug release (4.56), and decreased disintegration time (−0.30). SSG and PVP K-30 increased Carr index, Hausner ratio, hardness, friability, disintegration time, and drug release. The combination of SSG*PVP K-30 has the same effect, except that the disintegration time decreased. The optimum tablet formula is 4CH<sub>2</sub>Cl (300 mg), Ne (75 mg), SSG (33.60 mg), PVP K-30 (22.40 mg), MCC (40 mg), and SDL (up to 800 mg). 4CH<sub>2</sub>Cl tablets can be a candidate and choice for new analgesic drugs in the future.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100200"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000270/pdfft?md5=a80324e5d165886f3005648cc749103b&pid=1-s2.0-S2590257124000270-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem cell therapy as a promising approach for ischemic stroke treatment","authors":"Sahar Yaqubi, Mohammad Karimian","doi":"10.1016/j.crphar.2024.100183","DOIUrl":"10.1016/j.crphar.2024.100183","url":null,"abstract":"<div><p>Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"6 ","pages":"Article 100183"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257124000105/pdfft?md5=4930984c2fd48472ce800fface90619c&pid=1-s2.0-S2590257124000105-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}