{"title":"Control of Fruit Cracking by Shaping Skin Traits – Apple as a Model","authors":"I. Ginzberg, R. Stern","doi":"10.1080/07352689.2019.1698129","DOIUrl":"https://doi.org/10.1080/07352689.2019.1698129","url":null,"abstract":"Abstract Skin cracking limits fruit quality and marketability. Suggested causes are environmental conditions, orchard management, and failure of the skin to resist surface tension due to fruit expansion. Fruit skin is made up of epidermis cells and cuticular matrix. Theoretical and experimental studies of skin mechanics, together with anatomical and molecular comparisons of cracking-susceptible vs. tolerant genotypes, suggest that increased cuticle thickness, high epidermal cell density and strong adhesion between neighboring cells are associated with cracking resistance. Calyx-end cracking disorder in apple is treated with a mixture of gibberellic acids 4 and 7 (GA4 + 7) and the cytokinin 6-benzyladenine (BA) early in fruit development. The treatment not only significantly reduces cracking incidence in the orchard, it also provides information on the cellular and molecular factors determining fruit-skin resistance to growth strain. BA + GA4 + 7 application results in an immediate increase in epidermal cell density that is maintained until fruit maturation. Moreover, the epidermal cells form clusters within the cuticular matrix, which may strengthen the cuticle by adding more cell-wall components and may enhance crack repair. Skin anatomical modifications are complemented by the expression of genes associated with epidermal cell patterning and cuticle formation. Gene-networking analysis supports the interaction between cell-wall synthesis, cuticle-formation, and GA-signaling gene clusters. Overall, data suggest that BA + GA4 + 7 treatment does not modify developmental cues, but promotes or enhances the innate developmental program. This review presents data on BA- and GA4 + 7-induced skin modifications that complement previously suggested models for cracking resistance in fruit. Knowledge gained on apple fruit skin traits may be applied to control cracking in other fruit as well.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"401 - 410"},"PeriodicalIF":6.9,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1698129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45159940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Scossa, Federico Roda, Takayuki Tohge, M. Georgiev, A. Fernie
{"title":"The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species","authors":"F. Scossa, Federico Roda, Takayuki Tohge, M. Georgiev, A. Fernie","doi":"10.1080/07352689.2019.1682791","DOIUrl":"https://doi.org/10.1080/07352689.2019.1682791","url":null,"abstract":"Abstract Recent advances in genomics and metabolomics have made the study of specialized metabolism far more tractable than it was previously. Here we evaluate specialized metabolite pathways of Capsicum spp. (peppers), focusing mainly on carotenoids, flavonoids, and capsaicinoids as examples of classes of secondary metabolites. To place these data in the context of the evolution of metabolic pathways, we compare the extent of genomic and chemical diversity in several species of the nightshades (Solanaceae), the family to which pepper belongs. We further discuss the genetic mechanisms known to underly metabolic diversity prior to carrying out a detailed genomic study of the enzymes active in the pathways influencing fruit color and pungency. Using large-scale comparative analyses across 25 sequenced plant genomes, we identify orthologs of structural metabolic genes and discuss the data in terms of variation of gene family size and its impact on the diversity of secondary metabolites. Abbreviations BCAA: branched-chain amino acid; K-Pg: Cretaceous-Paleogene; ROS: reactive oxygen species; TE: transposable element; WGD: whole genome duplication","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"339 - 381"},"PeriodicalIF":6.9,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1682791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41359844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Beast and the Beauty: What Do we know about Black Spot in Roses?","authors":"T. Debener","doi":"10.1080/07352689.2019.1665778","DOIUrl":"https://doi.org/10.1080/07352689.2019.1665778","url":null,"abstract":"Abstract Black spot in roses caused by the hemibiotrophic ascomycete Diplocarpon rosae (Wolf) (anamorph Marssonina rosae) is the most devastating disease of field grown roses and, therefore, affects both consumers of ornamental roses and commercial production. Chemical control of the disease is restricted by regulations, and consumers increasingly demand resistant varieties. As breeding black spot resistant rose varieties is complicated by its polyploid nature and the regular emergence of new pathogenic races of the pathogen, a deeper understanding of the biological characteristics of the interaction between the fungal parasite and its host is urgently needed. This review summarizes some investigations of the parasite and its interactions from early descriptions of the pathogen to recent molecular analyses of the fungus.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"313 - 326"},"PeriodicalIF":6.9,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1665778","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41648310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Wang, H. Ye, L. Liu, Jiahui Wu, W. Ru, Genlou Sun
{"title":"Molecular Insights on the Domestication of Barley (Hordeum vulgare L.)","authors":"Y. Wang, H. Ye, L. Liu, Jiahui Wu, W. Ru, Genlou Sun","doi":"10.1080/07352689.2019.1658856","DOIUrl":"https://doi.org/10.1080/07352689.2019.1658856","url":null,"abstract":"Abstract Barley, Hordeum vulgare L., was first domesticated at about 8000 BCE. Throughout the domestication process, selection in the wild species resulted in the loss of seed shattering, minimization of seed dormancy, and an increase in both seed size and number. Three critical domestication traits were a non-brittle rachis, a six-rowed spike, and a naked caryopsis. After primary domestication, some adaptive traits subsequently developed, such as shortened seed dormancy and early flowering time, which are probably associated with genetic mutations affecting protein structure and function. Multiple genetic pathways formed a complex regulatory network due to interactions between the pathways. Recent studies on barley domestication genes have provided a framework for understanding how these traits evolved and have revealed that drastic changes in gene function occurred during domestication. In this paper, we review the current molecular insights into H. vulgare domestication and discuss the domestication genes that underlie morphological trait changes in the evolutionary history of barley.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"280 - 294"},"PeriodicalIF":6.9,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1658856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48946235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Barsoum, Björn Sabelleck, Pietro D. Spanu, R. Panstruga
{"title":"Rumble in the Effector Jungle: Candidate Effector Proteins in Interactions of Plants with Powdery Mildew and Rust Fungi","authors":"M. Barsoum, Björn Sabelleck, Pietro D. Spanu, R. Panstruga","doi":"10.1080/07352689.2019.1653514","DOIUrl":"https://doi.org/10.1080/07352689.2019.1653514","url":null,"abstract":"Abstract Rust and powdery mildew fungi are widespread obligate biotrophic phytopathogens. They colonize a broad range monocotyledonous and dicotyledonous host plant species and in the case of crop plants can cause severe yield losses. While powdery mildews (Ascomycota) grow mainly epiphytically and infect the host epidermis, rust fungi (Basidiomycota) typically enter host tissues through stomata and spread within the intercellular spaces. Both fungal taxa have unusually large genomes that are rich in repetitive elements (mostly derived from retrotransposons) and experienced a convergent loss of genes usually present in free-living fungi compared to their respective relatives. Genomes of rust and powdery mildew fungi encode many candidates for secreted effector proteins thought to aid the suppression of defense and cell death or to mediate nutrient acquisition. Although the precise biochemical activity of most effector proteins remains obscure, candidate host targets have been identified for several of them. In addition, some effectors are perceived by matching plant immune receptors and thus serve as avirulence determinants in plant-fungus interactions. This review article summarizes the current knowledge of rust and powdery mildew effector proteins and raises and discusses urgent questions regarding future research. Abbreviations: AVR: avirulence protein; BiFC: bimolecular fluorescence complementation; CSEP: candidate secreted effector protein; ETI: effector-triggered immunity; f. sp.: forma specialis; ff. spp.: formae speciales; MS: mass spectrometry; RIP: repeat-induced point mutation; R protein: resistance protein; sRNA: small RNA; TE: transposable element; Y2H: yeast-2-hybrid.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"255 - 279"},"PeriodicalIF":6.9,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1653514","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46552597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant Fucosyltransferases and the Emerging Biological Importance of Fucosylated Plant Structures","authors":"M. Soto, Breeanna R. Urbanowicz, M. Hahn","doi":"10.1080/07352689.2019.1673968","DOIUrl":"https://doi.org/10.1080/07352689.2019.1673968","url":null,"abstract":"Abstract Plants frequently incorporate the monosaccharide l-fucose (Fuc; 6-deoxy-l-galactose) into glycans and glycopolymers located in diverse cellular locations. The incorporation of Fuc onto these varied glycans is carried out by fucosyltransferases (FUTs), that make up a protein superfamily with equally varied and diverse functions. The structures wherein Fuc is found have numerous proposed and validated functions, ranging from plant growth and development, cell expansion, adhesion, and signaling, to energy metabolism, among others. FUTs from several different plant species have been identified and described; however, very few of them have been extensively characterized biochemically and biologically. In this review, we summarize plant FUTs that have been biochemically characterized and biologically investigated for associated phenotypes, offering greater insight and understanding into the physiological importance of Fuc in plants and in plant cell wall structures, glycans, and proteins.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"327 - 338"},"PeriodicalIF":6.9,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1673968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43001219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Ghanizadeh, C. Buddenhagen, K. Harrington, T. James
{"title":"The Genetic Inheritance of Herbicide Resistance in Weeds","authors":"H. Ghanizadeh, C. Buddenhagen, K. Harrington, T. James","doi":"10.1080/07352689.2019.1665769","DOIUrl":"https://doi.org/10.1080/07352689.2019.1665769","url":null,"abstract":"Abstract The number of herbicide-resistant weeds is increasing globally. A successful management practice requires an understanding of how resistance traits are inherited. Weed scientists worldwide have investigated the mode of inheritance for herbicide resistance in weeds. Depending on the resistance gene/mechanism, varied patterns of inheritance have been documented in weed species. In most of the target-enzyme mechanism cases, the mode of inheritance involves a single nuclear gene. However, maternal (cytoplasmic) inheritance has also been documented for triazine-resistant weeds with the target-enzyme mutation mechanism of resistance. Resistance from target-enzyme overexpression is not always associated with the single-gene model of inheritance. Depending on the type of resistance, allelic dominance varies between complete dominance, semi-dominance and recessive for both target-enzyme mutation and target-enzyme overexpression mechanisms. The nontarget site mechanism of resistance is however, more complex. The pattern of inheritance in weeds with nontarget site resistance is quite variable and should be investigated case by case. The pattern of inheritance has a crucial role in the dynamics of herbicide-resistance within a weed population, and knowledge about the inheritance of herbicide resistance traits could help develop predictive models and novel strategies to prevent the spread of resistance allele(s).","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"295 - 312"},"PeriodicalIF":6.9,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1665769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45903075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stop the Abuse of Time! Strict Temporal Banding is not the Future of Rank-Based Classifications in Fungi (Including Lichens) and Other Organisms","authors":"R. Lücking","doi":"10.1080/07352689.2019.1650517","DOIUrl":"https://doi.org/10.1080/07352689.2019.1650517","url":null,"abstract":"Abstract Classification is the most important approach to cataloging biological diversity. It serves as a principal means of communication between scientific disciplines, as well as between scientists on one hand and lawmakers and the public on the other. Up to the present, classification of plants, fungi, and animals follows the fundamental principles laid out more than 250 years ago by Linnaeus, with less changes in the formalistic approach although with somewhat diverging rules for plants and fungi on one hand and animals on the other. Linnean classifications obey two fundamental rules, the binomial as basic format for species names, including a genus-level name and a specific epithet, and rank-based higher classifications, with the main ranks encompassing genus, family, order, class, phylum (division), and kingdom. Given that molecular phylogenies have reshaped our understanding of natural relationships between organisms, and following the cladistic principle of monophyly which defines groups but not ranks, it has been repeatedly argued that rank assignments are artificial and subjective, with the suggestion to either abandon rank-based classifications altogether or apply more objective criteria to determine ranks. The most fundamental of such approaches has been the correlation of rank with geological (evolutionary) age, first established by Hennig in the middle of the past century and around the turn of the millenium formalized as “temporal banding,” based on the advent of the molecular clock. While initially the temporal banding approach received less attention, in the past ten years several major studies mostly in vertebrates (birds, mammals) and fungi (chiefly lichenized lineages) have proposed novel classifications based on a strict temporal banding approach, partly with highly disruptive results. In this paper, the temporal banding approach is critically revised, pointing out strengths and flaws, and “best practice” recommendations are given how to employ this technique properly and with care to improve existing classifications while avoiding unnecessary disruptions. A main conclusion is that taxa recognized at the same rank do not have to be comparable in age, diversity, or disparity, or any other single criterion, but their ranking should follow integrative principles that best reflect their individual evolutionary history. In a critical appraisal of changes to the classification of Lecanoromycetes (lichenized Fungi) proposed based on temporal banding, the following amendments are accepted: Ostropales split into Graphidales, Gyalectales, Ostropales s.str., and Thelenellales; Arctomiales, Hymeneliales, and Trapeliales subsumed under Baeomycetales; Letrouitiaceae subsumed under Brigantiaeaceae; Lobariaceae and Nephromataceae subsumed under Peltigeraceae; Miltideaceae subsumed under Agyriaceae, and Protoparmeloideae and Austromelanelixia as new subfamily and genus within Parmeliaceae. The following changes are not accepted: Rhizocarpale","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"199 - 253"},"PeriodicalIF":6.9,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1650517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45750892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheng Chen, Kaixuan Zhang, M. Khurshid, Jinbo Li, Ming He, M. Georgiev, Xinquan Zhang, Meiliang Zhou
{"title":"MYB Transcription Repressors Regulate Plant Secondary Metabolism","authors":"Cheng Chen, Kaixuan Zhang, M. Khurshid, Jinbo Li, Ming He, M. Georgiev, Xinquan Zhang, Meiliang Zhou","doi":"10.1080/07352689.2019.1632542","DOIUrl":"https://doi.org/10.1080/07352689.2019.1632542","url":null,"abstract":"Abstract MYB transcription factors (TFs) belong to one of the largest and important gene families, which regulate development under changing environmental conditions, primary and secondary metabolism, and plant response to stresses (biotic and abiotic stresses). MYB repressors have a conserved N-terminal domain like other MYB TFs, but the C-terminal domain makes them structurally and functionally different from the rest. MYB repressors usually possess some repressive motifs, such as EAR (ethylene-responsive element binding factor-associated amphiphilic repression motif), SID (Sensitive to ABA and Drought 2 protein interact motif), and TLLLFR motifs, which contribute to their repression function through a variety of complex regulatory mechanisms. In this review, we summarize recent developments in research of MYB repressors and suggest directions to future research.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"159 - 170"},"PeriodicalIF":6.9,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1632542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41401709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Victor Roch, T. Maharajan, S. Ceasar, S. Ignacimuthu
{"title":"The Role of PHT1 Family Transporters in the Acquisition and Redistribution of Phosphorus in Plants","authors":"G. Victor Roch, T. Maharajan, S. Ceasar, S. Ignacimuthu","doi":"10.1080/07352689.2019.1645402","DOIUrl":"https://doi.org/10.1080/07352689.2019.1645402","url":null,"abstract":"Abstract Phosphorus (P) is one of the most important macronutrients for plant growth and yield. Low availability of inorganic phosphate (Pi) in soil substantially curbs crop production, whereas excessive Pi fertilization causes economic and ecological problems. The rapid depletion of global rock phosphate (RP) reserves calls for efficient plant Pi-management. To cope with low Pi (LP) stress, plants have evolved morphological, physiological, molecular, and biochemical adaptations. Apart from arbuscular mycorrhizal fungi (AMF)-mediated Pi acquisition, Pi uptake, it's export, utilization, and remobilization depend on transport processes mediated by membrane bound PHosphate Transporters (PHTs), which are grouped into five families. Among these, the PHT1 family is the primary transporter involved in the acquisition of Pi from soil and redistribution within plants. In this review, we present a brief account on 5 PHTs (PHT1 to PHT5) and focus on PHT1s. We cover in detail the PHT1s identified and characterized until now in various plants including their phylogenetic relationships, induction by AMF, localization, and affinity. We also discuss the extant understanding of the regulation of PHT1s at transcriptional, post-transcriptional, and post-translational levels. Further exploitation of PHT1s will help overcome the problems associated with LP soils and assist in improving crop yields through sustainable agriculture.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"38 1","pages":"171 - 198"},"PeriodicalIF":6.9,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2019.1645402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41942990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}