Zhihao Pang, Hongyun Peng, Sen Lin, Yongchao Liang
{"title":"Theory and application of a Si-based defense barrier for plants: Implications for soil-plant-atmosphere system health","authors":"Zhihao Pang, Hongyun Peng, Sen Lin, Yongchao Liang","doi":"10.1080/10643389.2023.2267939","DOIUrl":"https://doi.org/10.1080/10643389.2023.2267939","url":null,"abstract":"AbstractDue to the frequent occurrence of extreme weather and severe environmental pollution, food security and human survival are at risk. Silicon, a key element in plant nutrition and environmental remediation, has a variety of applications in combatting various forms of abiotic and biotic stress and fostering healthy plants and soils. To establish a silicon-based defense barrier for plants, we firstly summarized and grouped the mechanisms of silicon functioning in plants: 1) molecular regulation and overall strengthening, 2) physical barrier and apoplastic obstruction, and 3) energy conservation. Additionally, the types and applications of silicon-based materials as soil remediation materials and fertilizers were discussed. Then, the challenges to build up such a barrier were analyzed in terms of silicon absorption and transportation, deposition and aggregation, and perception and regulation. An \"external + internal\" strategy was proposed to accelerate the establishment of a silicon-based barrier to enhance plants’ resistance to extreme weather and environmental pollution, including high temperatures, drought, ultraviolet radiation, salt, heavy metals, nutrient deficiencies, new pollutants, and biotic stress. Finally, this paper emphasized the contribution of silicon barrier to healthy Soil-Plant-Atmosphere system that eventually benefit human health. This paper highlights the current understanding and future perspectives of silicon-related research in Soil-Plant-Atmosphere system, providing a reference for the application of silicon-based materials in environmental and agricultural fields.Keywords: environmental pollutionplant healthSiliconsoil healthstress resistanceHandling Editors: Dan Tsang and Lena Q. Ma Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was jointly supported by grants from National Natural Science Foundation of China (No. 32272799), the Fundamental Research Funds for the Central Universities (No. 226-2023-00077) and National Key Research and Development Program of China (No. 2018YFD0800202).","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136057618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental occurrence, human exposure, and endocrine disruption of di-iso-nonyl phthalate and di-iso-decyl phthalate: A systematic review","authors":"Kyung Joo Lee, Kyungho Choi","doi":"10.1080/10643389.2023.2261815","DOIUrl":"https://doi.org/10.1080/10643389.2023.2261815","url":null,"abstract":"AbstractDi-iso-nonyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) have been employed increasingly as plasticizers to replace di-(2-ethylhexyl) phthalate (DEHP), a hormonal disruptor. Through this systematic review, we reviewed their (1) contamination levels in the environmental media, foods, and consumer products, (2) human exposure levels in national biomonitoring studies, and (3) associations with human sex and thyroid hormone disruption. PubMed, Scopus, and Web of Science were searched and eligible studies were identified. DINP and DIDP were found at higher concentrations in indoor environments, especially with high human activity and PVC use. In foods, contamination levels vary by production methods and tend to be higher in fatty foods. In children’s products, both plasticizers were more highly detected in samples measured before 2010. National biomonitoring data from several countries demonstrated that urinary levels of DINP and DIDP metabolites were relatively lower than those of DEHP. However, exposure to DINP has been associated with anti-androgenic potential in male offspring and adults and decreased thyroid hormones in mother–child pairs. In conclusion, existing literatures demonstrated widespread occurrence of DINP and DIDP in the indoor environment, diet, and children’s products, and in the human populations worldwide. At the current levels of exposure, DINP exhibited endocrine disruption potentials similar to those of DEHP, especially among males and pregnant women. Knowledge gaps in DIDP exposure among the human population were identified and should be considered for future studies.Keywords: Plasticizersphthalate acid esters (PAEs)exposurebiomonitoringendocrinesystematicreviewHANDLING EDITORS: Eakalak Khan and Lena Q. Ma Disclosure statementNo potential conflict of interest was reported by the authors.The conclusions, findings, and opinions expressed in this scientific paper reflect only the view of the authors and are not the official position of Health Canada.Additional informationFundingThis research was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C3011269).","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"299 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunyun Zheng, Jian Jin, Xiaojuan Wang, Peter M. Kopittke, James B. O’Sullivan, Caixian Tang
{"title":"Disentangling the effect of nitrogen supply on the priming of soil organic matter: A critical review","authors":"Yunyun Zheng, Jian Jin, Xiaojuan Wang, Peter M. Kopittke, James B. O’Sullivan, Caixian Tang","doi":"10.1080/10643389.2023.2266312","DOIUrl":"https://doi.org/10.1080/10643389.2023.2266312","url":null,"abstract":"The addition of fresh substrates can alter the decomposition of the native soil organic matter, referred to as the priming effect (PE). It is a crucial process within the cycling of soil organic ca...","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"41 30","pages":""},"PeriodicalIF":12.6,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahira Tasneem Rahman, Tao Jiang, Chiqian Zhang, Yi Rao, Ronald C. Sims, Liyuan Hou
{"title":"Diatoms in wastewater treatment: Potentials, applications, and values of biomass","authors":"Tahira Tasneem Rahman, Tao Jiang, Chiqian Zhang, Yi Rao, Ronald C. Sims, Liyuan Hou","doi":"10.1080/10643389.2023.2259278","DOIUrl":"https://doi.org/10.1080/10643389.2023.2259278","url":null,"abstract":"AbstractDiatoms have unique silica cellular and metabolic characteristics and can grow in various environments, including wastewater, facilitating pollutant removal. Diatoms provide a sustainable solution to municipal wastewater treatment, particularly in the tertiary and quaternary stages, contributing to carbon neutrality. Diatom-based materials (such as diatom biomass) have wide applications and can be processed into value-added bioproducts such as lipids, polysaccharides, and pigments. Despite their potentials, the applications of diatoms in wastewater treatment are limited. Existing reviews fail to address how diatom growth kinetics affects wastewater treatment. Here, we for the first time summarize diatom growth kinetics and propose promising species for municipal wastewater treatment. Given the scarcity of reviews on diatom performance in wastewater treatment, we also discuss the efficacy of diatoms in removing contaminants from municipal wastewater. Moreover, we elucidate the removal mechanisms of nutrients, heavy metals, and emerging contaminants by diatoms that are missing in existing reviews. Considering the complexity of wastewater, we emphasize selecting diatom species with high growth rates, tolerance to contaminants, efficient nutrient removal/uptake, and COD removal, and bioproduct yields. This will ensure both effective treatment and economic viability. In addition, we discuss the value of diatom frustules and bioproducts generated from wastewater. Lastly, we highlight future directions including promoting diatom growth, exploring diatom-dominated consortia in wastewater treatment, and evaluating the values of diatom biomass cultivated in wastewater. This review examines the potential and applications of diatoms in municipal wastewater treatment, especially effluent polishing.HighlightsDiatoms are a sustainable solution to municipal wastewater treatmentDiatoms can remove nutrients, heavy metals, and emerging pollutants from wastewaterSummarized the growth kinetics of various diatom species for the first timeDiscussed the removal mechanisms of contaminants from wastewater by diatomsCompiled the wide applications of diatom biomass from wastewaterKeywords: Heavy metalsmicroalgaemunicipal wastewater treatment plantspharmaceuticals and personal care productsphycoremediationHandling Editors: Eakalak Khan and Lena Q. Ma Authors’ contributionsT. R.: literature review; writing–original draft; C. Z.: literature review & editing; T. J., Y. R., and R. S.: review and editing; L. H.: writing–review and editing; funding acquisition.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. During the preparation of this review, the authors did not use AI and AI-assisted technologies.Additional informationFundingThe authors acknowledge startup funds for new faculty from Utah State University.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135719065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyang Ren, Kai Wang, Jinrui Zhang, Jingjing Li, Hanyue Zhang, Ruimin Qi, Wen Xu, Changrong Yan, Xuejun Liu, Fusuo Zhang, Davey L. Jones, David R. Chadwick
{"title":"Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China","authors":"Siyang Ren, Kai Wang, Jinrui Zhang, Jingjing Li, Hanyue Zhang, Ruimin Qi, Wen Xu, Changrong Yan, Xuejun Liu, Fusuo Zhang, Davey L. Jones, David R. Chadwick","doi":"10.1080/10643389.2023.2259275","DOIUrl":"https://doi.org/10.1080/10643389.2023.2259275","url":null,"abstract":"AbstractPlastic debris (including macro-plastics, microplastics (MPs), and nanoplastics), defined as an emerging contaminant, has been proven to significantly affect soil ecosystem functioning. Accordingly, there is an urgent need to robustly quantify the pollution situation and potential sources of plastics in soils. China as the leading producer and user of agricultural plastics is analyzed as a typical case study to highlight the current situation of farmland macro-plastics and MPs. Our study summarized information on the occurrence and abundance of macro-plastics and MPs in Chinese farmland soils for the first time based on 163 publications with 728 sample sites. The results showed that the average concentration of macro-plastics, and the abundance of MPs in Chinese farmlands were 103 kg ha−1 and 4537 items kg−1 (dry soil), respectively. In addition, this study synthesized the latest scientific evidence on sources of macro-plastics and MPs in farmland soils. Agricultural plastic films and organic wastes are the most reported sources, indicating that they contribute significantly to plastic debris in agricultural soils. Furthermore, the modeling methods for quantifying macro-plastics and MPs in soils and estimating the stock and flow of plastic materials within agricultural systems were also summarized.Keywords: Abundancefarmland soilsmacro-plasticsmicroplasticsquantitative methodsource apportionmentHANDLING EDITORS: Hyunjung Kim and Jörg Rinklebe Disclosure statementThe authors report there are no competing interests to declare.Additional informationFundingThis research was supported by the National Natural Science Foundation of China under Grant [number 42277097]; the UKRI Global Challenges Research Fund (GCRF) and the Natural Environment Research Council project, “Do agricultural microplastics undermine food security and sustainable development in less economically developed countries?” under Grant [NE/V005871/1]; the International Cooperation and Exchange of the National Natural Science Foundation of China under Grant [NSFC-UNEP: 32261143459], and the High-level Team Project of China Agricultural University.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135965999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Gaffar Sheik, Arvind Kumar, Reeza Patnaik, S. Kumari, F. Bux
{"title":"Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review","authors":"Abdul Gaffar Sheik, Arvind Kumar, Reeza Patnaik, S. Kumari, F. Bux","doi":"10.1080/10643389.2023.2252313","DOIUrl":"https://doi.org/10.1080/10643389.2023.2252313","url":null,"abstract":"","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48189186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaona Li, Xiaowei Wang, Chunting Ren, K. N. Palansooriya, Zhenyu Wang, Scott X. Chang
{"title":"Microplastic pollution: Phytotoxicity, environmental risks, and phytoremediation strategies","authors":"Xiaona Li, Xiaowei Wang, Chunting Ren, K. N. Palansooriya, Zhenyu Wang, Scott X. Chang","doi":"10.1080/10643389.2023.2252310","DOIUrl":"https://doi.org/10.1080/10643389.2023.2252310","url":null,"abstract":"","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47860399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the quality and reputation of Critical Reviews in Environmental Science and Technology journal: 2023 updates","authors":"L. Ma, Dong-Xing Guan, Peng Gao, K. Hayat","doi":"10.1080/10643389.2023.2222979","DOIUrl":"https://doi.org/10.1080/10643389.2023.2222979","url":null,"abstract":"ainstitute of soil and water resources and environmental science, College of environmental and resource sciences Zhejiang University, hangzhou, China; bdepartment of environmental and occupational health, and department of Civil and environmental engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, Usa; cKey laboratory of Pollution exposure and health intervention, interdisciplinary research academy, Zhejiang shuren University, hangzhou, China","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1563 - 1567"},"PeriodicalIF":12.6,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47853260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Addressing the intersection of COVID-19 and metal nanoparticle use: Risks and control strategies","authors":"Jia Yin, Jia Gao, Shuang Liu, Li-gang Hu, Chunyang Liao, Guibin Jiang","doi":"10.1080/10643389.2023.2250707","DOIUrl":"https://doi.org/10.1080/10643389.2023.2250707","url":null,"abstract":"","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43587368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Liu, Xun Wang, W. Yuan, Dingyong Wang, Xinbin Feng
{"title":"Tree rings recording historical atmospheric mercury: A review of progresses and challenges","authors":"Xu Liu, Xun Wang, W. Yuan, Dingyong Wang, Xinbin Feng","doi":"10.1080/10643389.2023.2250706","DOIUrl":"https://doi.org/10.1080/10643389.2023.2250706","url":null,"abstract":"","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48579313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}